
REV. 0
AD7675
–
13
–
Care should also be taken with the reference temperature coeffi-
cient of the voltage reference which directly affects the full-scale
accuracy if this parameter matters. For instance, a
±
15 ppm/
°
C
tempco of the reference changes the full scale by
±
1 LSB/
°
C.
V
REF
, as mentioned in the specification table, could be increased
to AVDD – 1.85 V. The benefit here is the increased SNR
obtained as a result of this increase. Since the input range is
defined in terms of V
REF
, this would essentially increase the
range to make it a
±
3 V input range with an AVDD above
4.85 V. The theoretical improvement as a result of this increase
in reference is 1.58 dB (20 log [3/2.5]). Due to the theoretical
quantization noise, however, the observed improvement is
approximately 1 dB. The AD780 can be selected with a 3 V
reference voltage.
Power Supply
The AD7675 uses three sets of power supply pins: an analog
5 V supply AVDD, a digital 5 V core supply DVDD, and a
digital input/output interface supply OVDD. The OVDD supply
allows direct interface with any logic working between 2.7 V and
5.25 V. To reduce the number of supplies needed, the digital
core (DVDD) can be supplied through a simple RC filter from
the analog supply as shown in Figure 5. The AD7675 is inde-
pendent of power supply sequencing and thus free from supply
voltage induced latchup. Additionally, it is very insensitive to
power supply variations over a wide frequency range as shown
in Figure 9.
FREQUENCY
–
Hz
75
P
–
35
65
10k
10M
1k
1M
55
100k
45
70
60
50
40
Figure 9. PSRR vs. Frequency
POWER DISSIPATION
The AD7675 automatically reduces its power consumption at
the end of each conversion phase. During the acquisition phase,
the operating currents are very low which allows a significant
power saving when the conversion rate is reduced as shown in
Figure 10. This feature makes the AD7675 ideal for very low-
power battery applications.
It should be noted that the digital interface remains active even
during the acquisition phase. To reduce the operating digital
supply currents even further, the digital inputs need to be driven
close to the power rails (i.e., DVDD and DGND) and OVDD
should not exceed DVDD by more than 0.3 V.
SAMPLING RATE
–
SPS
P
–
0.1
10k
100
100k
10
10k
100
1k
1
100k
1k
10
1M
Figure 10. Power Dissipation vs. Sample Rate
CONVERSION CONTROL
Figure 11 shows the detailed timing diagrams of the conversion
process. The AD7675 is controlled by the signal
CNVST
which
initiates conversion. Once initiated, it cannot be restarted or
aborted, even by the power-down input PD, until the conver-
sion is complete. The
CNVST
signal operates independently of
CS
and
RD
signals.
CNVST
t
1
t
2
MODE
ACQUIRE
CONVERT
ACQUIRE
CONVERT
t
7
t
8
BUSY
t
4
t
3
t
5
t
6
Figure 11. Basic Conversion Timing
For true sampling applications, the recommended operation of
the
CNVST
signal is as follows:
CNVST
must be held high from the previous falling edge of
BUSY, and during a minimum delay corresponding to the
acquisition time t
8
; then, when
CNVST
is brought low, a
conversion is initiated and BUSY signal goes high until the
completion of the conversion. Although
CNVST
is a digital
signal, it should be designed with this special care with fast,
clean edges and levels, with minimum overshoot and under-
shoot or ringing.
For applications where the SNR is critical, the
CNVST
signal should
have a very low jitter. Some solutions to achieve that are to use a
dedicated oscillator for
CNVST
generation or, at least, to clock
it with a high-frequency low-jitter clock, as shown in Figure 5.