欧美成人免费电影,国产欧美一区二区三区精品酒店,精品国产a毛片,色网在线免费观看

參數資料
型號: MPSW63ZL1
廠商: ON SEMICONDUCTOR
元件分類: 小信號晶體管
英文描述: 500 mA, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92
封裝: PLASTIC, TO-226AE, 3 PIN
文件頁數: 21/34頁
文件大小: 337K
代理商: MPSW63ZL1
Reliability and Quality Assurance
9–16
Motorola Small–Signal Transistors, FETs and Diodes Device Data
MECHANICAL SHOCK
This test is used to determine the ability of the device to
withstand a sudden change in mechanical stress due to abrupt
changes in motion as seen in handling, transportation, or
actual use.
Typical Test Conditions: Acceleration = 1500 g’s, Orienta-
tion = X1, Y1, Y2 plane, t = 0.5 msec, Blows = 5
Common Failure Modes: Open, short, excessive leak-
age, mechanical failure
Common Failure Mechanisms: Die and wire bonds,
cracked die, package defects
Military Reference: MIL–STD–750, Method 2015
MOISTURE RESISTANCE
The purpose of this test is to evaluate the moisture resistance
of components under temperature/humidity conditions typical
of tropical environments.
Typical Test Conditions: TA = –10°C to 65°C, rh = 80%
to 98%, t = 24 hours/cycles, cycle = 10
Common Failure Modes: Parametric shifts in leakage
and mechanical failure
Common Failure Mechanisms: Corrosion or contami-
nants on or within the package materials. Poor package
sealing
Military Reference: MIL–STD–750, Method 1021
SOLDERABILITY
The purpose of this test is to measure the ability of the device
leads/terminals to be soldered after an extended period of
storage (shelf life).
Typical Test Conditions: Steam aging = 8 hours, Flux =
R, Solder = Sn60, Sn63
Common Failure Modes: Pin holes, dewetting, nonwet-
ting
Common Failure Mechanisms: Poor plating, contami-
nated leads
Military Reference: MIL–STD–750, Method 2026
SOLDER HEAT
This test is used to measure the ability of a device to withstand
the temperatures as may be seen in wave soldering
operations. Electrical testing is the endpoint critierion for this
stress.
Typical Test Conditions: Solder Temperature = 260
°C, t
= 10 seconds
Common Failure Modes: Parameter shifts, mechanical
failure
Common Failure Mechanisms: Poor package design
Military Reference: MIL–STD–750, Method 2031
STEADY STATE OPERATING LIFE (SSOL)
The purpose of this test is to evaluate the bulk stability of the
die and to generate defects resulting from manufacturing
aberrations
that
are
manifested
as
time
and
stress–dependent failures.
Typical Test Conditions: TA = 25°C, PD = Data Book
maximum rating, t = 16 to 1000 hours
Common Failure Modes: Parametric shifts and cata-
strophic
Common Failure Mechanisms: Foreign material, crack
die, bulk die, metallization, wire and die bond defects
Military Reference: MIL–STD–750, Method 1026
TEMPERATURE CYCLING (AIR TO AIR)
The purpose of this test is to evaluate the ability of the device
to withstand both exposure to extreme temperatures and
transitions between temperature extremes. This testing will
also expose excessive thermal mismatch between materials.
Typical Test Conditions: TA = –65°C to 200°C, cycle =
10 to 4000
Common Failure Modes: Parametric shifts and cata-
strophic
Common Failure Mechanisms: Wire bond, cracked or
lifted die and package failure
Military Reference: MIL–STD–750, Method 1051
THERMAL SHOCK (LIQUID TO LIQUID)
The purpose of this test is to evaluate the ability of the device
to withstand both exposure to extreme temperatures and
sudden transitions between temperature extremes. This
testing will also expose excessive thermal mismatch between
materials.
Typical Test Conditions: TA = 0°C to 100°C, cycle = 20
to 300
Common Failure Modes: Parametric shifts and cata-
strophic
Common Failure Mechanisms: Wire bond, cracked or
lifted die and package failure
Military Reference: MIL–STD–750, Method 1056
VARIABLE FREQUENCY VIBRATION
This test is used to examine the ability of the device to
withstand deterioration due to mechanical resonance.
Typical Test Conditions: Peak acceleration = 20 g’s,
Frequency range = 20 Hz to KHz, t = 48 minutes
Common Failure Modes: Open, short, excessive leak-
age, mechanical failure
Common Failure Mechanisms: Die and wire bonds,
cracked die, package defects
Military Reference: MIL–STD–750, Method 2056
相關PDF資料
PDF描述
MPSW63RLRE 500 mA, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92
MPSW64RLRA 500 mA, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92
MPSW64RLRE 500 mA, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92
MPSW64RL 500 mA, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92
MPSW64ZL1 500 mA, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92
相關代理商/技術參數
參數描述
MPSW64 制造商:ONSEMI 制造商全稱:ON Semiconductor 功能描述:One Watt Darlington Transistors PNP Silicon
MPSW92 功能描述:兩極晶體管 - BJT 500mA 300V PNP RoHS:否 制造商:STMicroelectronics 配置: 晶體管極性:PNP 集電極—基極電壓 VCBO: 集電極—發射極最大電壓 VCEO:- 40 V 發射極 - 基極電壓 VEBO:- 6 V 集電極—射極飽和電壓: 最大直流電集電極電流: 增益帶寬產品fT: 直流集電極/Base Gain hfe Min:100 A 最大工作溫度: 安裝風格:SMD/SMT 封裝 / 箱體:PowerFLAT 2 x 2
MPSW92_10 制造商:ONSEMI 制造商全稱:ON Semiconductor 功能描述:One Watt High Voltage Transistor
MPSW92G 功能描述:兩極晶體管 - BJT 500mA 300V PNP RoHS:否 制造商:STMicroelectronics 配置: 晶體管極性:PNP 集電極—基極電壓 VCBO: 集電極—發射極最大電壓 VCEO:- 40 V 發射極 - 基極電壓 VEBO:- 6 V 集電極—射極飽和電壓: 最大直流電集電極電流: 增益帶寬產品fT: 直流集電極/Base Gain hfe Min:100 A 最大工作溫度: 安裝風格:SMD/SMT 封裝 / 箱體:PowerFLAT 2 x 2
MPSW92RLRA 功能描述:兩極晶體管 - BJT 500mA 300V PNP RoHS:否 制造商:STMicroelectronics 配置: 晶體管極性:PNP 集電極—基極電壓 VCBO: 集電極—發射極最大電壓 VCEO:- 40 V 發射極 - 基極電壓 VEBO:- 6 V 集電極—射極飽和電壓: 最大直流電集電極電流: 增益帶寬產品fT: 直流集電極/Base Gain hfe Min:100 A 最大工作溫度: 安裝風格:SMD/SMT 封裝 / 箱體:PowerFLAT 2 x 2
主站蜘蛛池模板: 石屏县| 东乌珠穆沁旗| 万安县| 襄城县| 定安县| 长寿区| 湖南省| 怀安县| 台湾省| 耒阳市| 溧水县| 商洛市| 松溪县| 军事| 加查县| 玉山县| 靖州| 宁明县| 克拉玛依市| 陵水| 连云港市| 岚皋县| 长治市| 乾安县| 临清市| 浪卡子县| 卢湾区| 永顺县| 阳江市| 赤壁市| 黔西县| 洱源县| 汕头市| 沙坪坝区| 商丘市| 慈利县| 浑源县| 南川市| 诸城市| 寿阳县| 晋宁县|