欧美成人免费电影,国产欧美一区二区三区精品酒店,精品国产a毛片,色网在线免费观看

參數資料
型號: A40MX04-3PL68
元件分類: FPGA
英文描述: FPGA, 547 CLBS, 6000 GATES, 109 MHz, PQCC68
封裝: PLASTIC, LCC-68
文件頁數: 31/124頁
文件大小: 3142K
代理商: A40MX04-3PL68
40MX and 42MX FPGA Families
1- 8
v6.1
Power Dissipation
The general power consumption of MX devices is made
up of static and dynamic power and can be expressed
with the following equation:
General Power Equation
P = [ICCstandby + ICCactive] * VCCI + IOL* VOL* N
+ IOH * (VCCI – VOH) * M
where:
ICCstandby is the current flowing when no inputs or
outputs are changing.
ICCactive is the current flowing due to CMOS
switching.
IOL, IOH are TTL sink/source currents.
VOL, VOH are TTL level output voltages.
N equals the number of outputs driving TTL loads to
VOL.
M equals the number of outputs driving TTL loads to
VOH.
Accurate values for N and M are difficult to determine
because they depend on the family type, on design
details, and on the system I/O. The power can be divided
into two components: static and active.
Static Power Component
The static power due to standby current is typically a
small component of the overall power consumption.
Standby power is calculated for commercial, worst-case
conditions. The static power dissipation by TTL loads
depends on the number of outputs driving, and on the
DC load current. For instance, a 32-bit bus sinking 4mA at
0.33V will generate 42mW with all outputs driving LOW,
and 140mW with all outputs driving HIGH. The actual
dissipation will average somewhere in between, as I/Os
switch states with time.
Active Power Component
Power dissipation in CMOS devices is usually dominated
by the dynamic power dissipation. Dynamic power
consumption is frequency-dependent and is a function of
the logic and the external I/O. Active power dissipation
results from charging internal chip capacitances of the
interconnect, unprogrammed antifuses, module inputs,
and module outputs, plus external capacitances due to
PC board traces and load device inputs. An additional
component of the active power dissipation is the totem
pole current in the CMOS transistor pairs. The net effect
can be associated with an equivalent capacitance that
can be combined with frequency and voltage to
represent active power dissipation.
The power dissipated by a CMOS circuit can be expressed
by the equation:
Power (W) = CEQ * VCCA
2 * F(1)
where:
CEQ =Equivalent capacitance expressed in picofarads (pF)
VCCA =Power supply in volts (V)
F =Switching frequency in megahertz (MHz)
Equivalent Capacitance
Equivalent capacitance is calculated by measuring
ICCactive at a specified frequency and voltage for each
circuit component of interest. Measurements have been
made over a range of frequencies at a fixed value of VCC.
Equivalent capacitance is frequency-independent, so the
results can be used over a wide range of operating
conditions. Equivalent capacitance values are shown
below.
CEQ Values for Actel MX FPGAs
Modules (CEQM)3.5
Input Buffers (CEQI)6.9
Output Buffers (CEQO)18.2
Routed Array Clock Buffer Loads (CEQCR)1.4
To calculate the active power dissipated from the
complete design, the switching frequency of each part of
the logic must be known. The equation below shows a
piece-wise linear summation over all components.
Power = VCCA
2 * [(m x C
EQM * fm)Modules +
(n *
CEQI * fn)Inputs + (p * (CEQO + CL) *
fp)outputs +
0.5 * (q1 * CEQCR * fq1)routed_Clk1 + (r1 *
fq1)routed_Clk1 +
0.5 * (q2 * CEQCR * fq2)routed_Clk2 + (r2 *
fq2)routed_Clk2 (2)
where:
m
= Number
of
logic
modules
switching
at
frequency fm
n
= Number
of
input
buffers
switching
at
frequency fn
p
= Number
of
output
buffers
switching
at
frequency fp
q1
= Number of clock loads on the first routed array
clock
q2
= Number of clock loads on the second routed
array clock
r1
= Fixed capacitance due to first routed array
clock
r2
= Fixed capacitance due to second routed array
clock
相關PDF資料
PDF描述
A40MX04-3PL84IX79 FPGA, 547 CLBS, 6000 GATES, 109 MHz, PQCC84
A40MX04-3PL84I FPGA, 547 CLBS, 6000 GATES, 109 MHz, PQCC84
A40MX04-3PL84X79 FPGA, 547 CLBS, 6000 GATES, 109 MHz, PQCC84
A40MX04-3PL84 FPGA, 547 CLBS, 6000 GATES, 109 MHz, PQCC84
A40MX04-3PQ100IX79 FPGA, 547 CLBS, 6000 GATES, 109 MHz, PQFP100
相關代理商/技術參數
參數描述
A40MX04-3PL68I 功能描述:IC FPGA MX SGL CHIP 6K 68-PLCC RoHS:否 類別:集成電路 (IC) >> 嵌入式 - FPGA(現場可編程門陣列) 系列:MX 標準包裝:90 系列:ProASIC3 LAB/CLB數:- 邏輯元件/單元數:- RAM 位總計:36864 輸入/輸出數:157 門數:250000 電源電壓:1.425 V ~ 1.575 V 安裝類型:表面貼裝 工作溫度:-40°C ~ 125°C 封裝/外殼:256-LBGA 供應商設備封裝:256-FPBGA(17x17)
A40MX04-3PL68M 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Field Programmable Gate Array (FPGA)
A40MX04-3PL84 功能描述:IC FPGA MX SGL CHIP 6K 84-PLCC RoHS:否 類別:集成電路 (IC) >> 嵌入式 - FPGA(現場可編程門陣列) 系列:MX 標準包裝:90 系列:ProASIC3 LAB/CLB數:- 邏輯元件/單元數:- RAM 位總計:36864 輸入/輸出數:157 門數:250000 電源電壓:1.425 V ~ 1.575 V 安裝類型:表面貼裝 工作溫度:-40°C ~ 125°C 封裝/外殼:256-LBGA 供應商設備封裝:256-FPBGA(17x17)
A40MX04-3PL84I 功能描述:IC FPGA MX SGL CHIP 6K 84-PLCC RoHS:否 類別:集成電路 (IC) >> 嵌入式 - FPGA(現場可編程門陣列) 系列:MX 標準包裝:90 系列:ProASIC3 LAB/CLB數:- 邏輯元件/單元數:- RAM 位總計:36864 輸入/輸出數:157 門數:250000 電源電壓:1.425 V ~ 1.575 V 安裝類型:表面貼裝 工作溫度:-40°C ~ 125°C 封裝/外殼:256-LBGA 供應商設備封裝:256-FPBGA(17x17)
A40MX04-3PL84M 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Field Programmable Gate Array (FPGA)
主站蜘蛛池模板: 台北市| 阳春市| 晋江市| 凉城县| 衡东县| 方山县| 平阳县| 盱眙县| 浦东新区| 德惠市| 广西| 剑川县| 华容县| 丰县| 石门县| 河北省| 新龙县| 阳城县| 屯昌县| 闻喜县| 临汾市| 积石山| 监利县| 陕西省| 固原市| 闻喜县| 斗六市| 长阳| 高台县| 雅江县| 天等县| 田林县| 上犹县| 灵台县| 寿光市| 吐鲁番市| 天等县| 青龙| 梧州市| 怀仁县| 老河口市|