欧美成人免费电影,国产欧美一区二区三区精品酒店,精品国产a毛片,色网在线免费观看

參數資料
型號: AD8005AR-REEL
廠商: ANALOG DEVICES INC
元件分類: 運動控制電子
英文描述: 270 MHz, 400 uA Current Feedback Amplifier
中文描述: OP-AMP, 50000 uV OFFSET-MAX, PDSO8
封裝: PLASTIC, SOIC-8
文件頁數: 10/12頁
文件大小: 183K
代理商: AD8005AR-REEL
AD8005
–10–
REV. A
Single-Ended-to-Differential Conversion
Many single supply ADCs have differential inputs. In such cases,
the ideal common-mode operating point is usually halfway
between supply and ground. Figure 31 shows how to convert a
single-ended bipolar signal into a differential signal with a
common-mode level of 2.5 V.
0.1
m
F
0.1
m
F
+5V
R
IN
1k
V
AD8005
2.49k
V
0.1
m
F
BIPOLAR
SIGNAL
6
0.5V
+5V
2.49k
V
2.49k
V
+5V
AD8005
0.1
m
F
2.49k
V
+5V
V
OUT
R
F1
2.49k
V
R
F2
3.09k
V
R
G
619
V
Figure 31. Single-Ended-to-Differential Converter
Amp 1 has its +input driven with the ac-coupled input signal
while the +input of Amp 2 is connected to a bias level of +2.5 V.
Thus the –input of Amp 2 is driven to virtual +2.5 V by its
output. Therefore, Amp 1 is configured for a noninverting gain
of five, (1 + R
F1
/R
G
), because RG is connected to the virtual
+2.5 V of Amp 2’s –input.
When the +input of Amp 1 is driven with a signal, the same
signal appears at the –input of Amp 1. This signal serves as an
input to Amp 2 configured for a gain of –5, (–R
F2
/R
G
). Thus the
two outputs move in opposite directions with the same gain and
create a balanced differential signal.
This circuit can be simplified to create a bipolar in/bipolar out
single-ended to differential converter. Obviously, a single supply
is no longer adequate and the –V
S
pins must now be powered
with –5 V. The +input to Amp 2 is tied to ground. The ac
coupling on the +input of Amp 1 is removed and the signal can
be fed directly into Amp 1.
Layout Considerations
In order to achieve the specified high-speed performance of the
AD8005 you must be attentive to board layout and component
selection. Proper R
F
design techniques and selection of compo-
nents with low parasitics are necessary.
The PCB should have a ground plane that covers all unused
portions of the component side of the board. This will provide a
low impedance path for signals flowing to ground. The ground
plane should be removed from the area under and around the
chip (leave about 2 mm between the pin contacts and the
ground plane). This helps to reduce stray capacitance. If both
signal tracks and the ground plane are on the same side of the
PCB, also leave a 2 mm gap between ground plane and track.
C1
0.01
m
F
C2
0.01
m
F
C4
10
m
F
C3
10
m
F
R
T
INVERTING CONFIGURATION
V
IN
V
OUT
+V
S
–V
S
R
G
R
F
R
O
C1
0.01
m
F
C2
0.01
m
F
C4
10
m
F
C3
10
m
F
R
T
NONINVERTING CONFIGURATION
V
IN
V
OUT
+V
S
–V
S
R
G
R
F
R
O
Figure 32. Inverting and Noninverting Configurations
Chip capacitors have low parasitic resistance and inductance
and are suitable for supply bypassing (see Figure 32). Make sure
that one end of the capacitor is within 1/8 inch of each power
pin with the other end connected to the ground plane. An
additional large (0.47
μ
F–10
μ
F) tantalum electrolytic capacitor
should also be connected in parallel. This capacitor supplies
current for fast, large signal changes at the output. It must not
necessarily be as close to the power pin as the smaller capacitor.
Locate the feedback resistor close to the inverting input pin in
order to keep the stray capacitance at this node to a minimum.
Capacitance variations of less than 1.5 pF at the inverting input
will significantly affect high-speed performance.
Use stripline design techniques for long signal traces (i.e., greater
than about 1 inch). Striplines should have a characteristic
impedance of either 50
or 75
. For the Stripline to be
effective, correct termination at both ends of the line is necessary.
Table I. Typical Bandwidth vs. Gain Setting Resistors
Small Signal –3 dB
BW (MHz),
V
S
=
6
5 V
Gain
R
F
R
G
R
T
–1
–10
+1
+2
+10
1.49 k
1 k
2.49 k
2.49 k
499
1.49 k
100
`
2.49 k
56.2
52.3
100
49.9
49.9
49.9
120 MHz
60 MHz
270 MHz
170 MHz
40 MHz
相關PDF資料
PDF描述
AD8009 1 GHz, 5,500 V/us Low Distortion Amplifier
AD8009AR 1 GHz, 5,500 V/us Low Distortion Amplifier
AD8009ART 1 GHz, 5,500 V/us Low Distortion Amplifier
AD8009ART-REEL 1 GHz, 5,500 V/us Low Distortion Amplifier
AD8009ART-REEL7 Buffer with 3-State Output
相關代理商/技術參數
參數描述
AD8005AR-REEL7 制造商:Analog Devices 功能描述:OP Amp Single Current Fdbk 制造商:Rochester Electronics LLC 功能描述:SOIC 180MHZ,400UA CURRENT FEEDBACK AMP - Tape and Reel
AD8005ART-EBZ 功能描述:BOARD EVAL FOR AD8005ART RoHS:是 類別:編程器,開發系統 >> 評估板 - 運算放大器 系列:- 產品培訓模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標準包裝:1 系列:-
AD8005ART-R2 制造商:Analog Devices 功能描述:OP Amp Single Current Fdbk
AD8005ART-REEL 制造商:Analog Devices 功能描述:OP Amp Single Current Fdbk
AD8005ART-REEL7 制造商:Analog Devices 功能描述:OP Amp Single Current Fdbk 制造商:Rochester Electronics LLC 功能描述:SOT23 180MHZ,400UA CURRENT FEEDBACK AMP - Tape and Reel
主站蜘蛛池模板: 安远县| 桓仁| 瑞安市| 宁陕县| 乌兰浩特市| 宣恩县| 定安县| 云安县| 三门县| 社会| 垫江县| 克什克腾旗| 浏阳市| 芦山县| 铜山县| 巴南区| 镇赉县| 德清县| 富平县| 长岭县| 平昌县| 灵武市| 和静县| 巨鹿县| 房产| 阳曲县| 和林格尔县| 忻城县| 定日县| 红原县| 新泰市| 海盐县| 镇原县| 黄陵县| 濮阳市| 阿克| 大新县| 昔阳县| 宁明县| 唐海县| 临潭县|