欧美成人免费电影,国产欧美一区二区三区精品酒店,精品国产a毛片,色网在线免费观看

參數資料
型號: HC5526CM
廠商: INTERSIL CORP
元件分類: 模擬傳輸電路
英文描述: ITU CO/PABX SLIC with Low Power Standby
中文描述: TELECOM-SLIC, PQCC28
封裝: PLASTIC, MS-018AB, LCC-28
文件頁數: 15/18頁
文件大小: 176K
代理商: HC5526CM
71
11. Two-WireReturnLoss.
The 2-wire return loss is computed
using the following equation:
r = -20
log (2V
M
/V
S
),
where: Z
D
= The desired impedance; e.g., the characteristic
impedance of the line, nominally 600
.
(Reference Figure 6).
12. OverloadLevel(4-Wireport).
The overload level is specified at
the 4-wire transmit port (V
TXO
) with the signal source (E
G
) at
the 2-wire port, I
DCMET
= 23mA, Z
L
= 20k
(Reference Figure
7). Increase the amplitude of E
G
until 1% THD is measured at
V
TXO
. Note that the gain from the 2-wire port to the 4-wire port
is equal to 1.
13. OutputOffsetVoltage.
The output offset voltage is specified
with the following conditions: E
G
= 0, I
DCMET
= 23mA, Z
L
=
and is measured at V
TX
. E
G
, I
DCMET
, V
TX
and Z
L
are defined
in Figure 7. Note: I
DCMET
is established with a series 600
resistor between tip and ring.
14. Two-Wire to Four-Wire (Metallic to VTX) Voltage Gain.
The 2-
wire to 4-wire (metallic to V
TX
) voltage gain is computed using
the following equation.
G
2-4
= (V
TX
/V
TR
), E
G
= 0dBm0, V
TX
, V
TR
, and E
G
are defined
in Figure 7.
15. Current Gain RSN to Metallic.
The current gain RSN to Metallic
is computed using the following equation:
K = I
M
[(R
DC1
+ R
DC2
)/(V
RDC
- V
RSN
)]
V
RDC
and V
RSN
are defined in Figure 8.
K, I
M
, R
DC1
, R
DC2
,
16. Two-Wire to Four-Wire Frequency Response.
The 2-wire to
4-wire frequency response is measured with respect to E
G
= 0dBm
at 1.0kHz, E
RX
= 0V, I
DCMET
= 23mA. The frequency response is
computed using the following equation:
F
2-4
= 20
log (V
TX
/V
TR
), vary frequency from 300Hz to
3.4kHz and compare to 1kHz reading.
V
TX
, V
TR
, and E
G
are defined in Figure 9.
17. Four-Wire to Two-Wire Frequency Response.
The
2-wire frequency response is measured with respect to
E
RX
= 0dBm at 1.0kHz, E
G
= 0V, I
DCMET
= 23mA. The fre-
quency response is computed using the following equation:
4-wire
to
F
4-2
= 20
log (V
TR
/E
RX
), vary frequency from 300Hz to
3.4kHz and compare to 1kHz reading.
V
TR
and E
RX
are defined in Figure 9.
18. Four-Wire to Four-Wire Frequency Response.
The 4-wire to
4-wire frequency response is measured with respect to
E
RX
= 0dBm at 1.0kHz, E
G
= 0V, I
DCMET
= 23mA. The fre-
quency response is computed using the following equation:
F
4-4
= 20
log (V
TX
/E
RX
), vary frequency from 300Hz to
3.4kHz and compare to 1kHz reading.
V
TX
and E
RX
are defined in Figure 9.
19. Two-Wire to Four-Wire Insertion Loss.
The 2-wire to 4-wire
insertion loss is measured with respect to E
G
= 0dBm at 1.0kHz
input signal, E
RX
= 0, I
DCMET
= 23mA and is computed using
the following equation:
L
2-4
= 20
log (V
TX
/V
TR
).
where: V
TX
, V
TR
, and E
G
are defined in Figure 9. (Note: The
fuse resistors, R
F
, impact the insertion loss. The specified
insertion loss is for R
F
= 0).
20. Four-Wire to Two-Wire Insertion Loss.
The 4-wire to 2-wire
insertion loss is measured based upon E
RX
= 0dBm, 1.0kHz
input signal, E
G
= 0, I
DCMET
= 23mA and is computed using
the following equation:
L
4-2
= 20
log (V
TR
/E
RX
).
where: V
TR
and E
RX
are defined in Figure 9.
21. Two-Wire to Four-Wire Gain Tracking.
The 2-wire to 4-wire
gain tracking is referenced to measurements taken for
E
G
= -10dBm, 1.0kHz signal, E
RX
= 0, I
DCMET
= 23mA and is
computed using the following equation.
G
2-4
= 20
log (V
TX
/V
TR
) vary amplitude -40dBm to +3dBm, or
-55dBm to -40dBm and compare to -10dBm reading.
V
TX
and V
TR
are defined in Figure 9.
22. Four-Wire to Two-Wire Gain Tracking.
The 4-wire to 2-wire
gain tracking is referenced to measurements taken for
E
RX
= -10dBm, 1.0kHz signal, E
G
= 0, I
DCMET
= 23mA and is
computed using the following equation:
G
4-2
= 20
log (V
TR
/E
RX
) vary amplitude -40dBm to +3dBm,
or -55dBm to -40dBm and compare to -10dBm reading.
V
TR
and E
RX
are defined in Figure 9. The level is specified at the
4-wire receive port and referenced to a 600
impedance level.
23. Two-WireIdleChannelNoise.
The 2-wire idle channel noise at
V
TR
is specified with the 2-wire port terminated in 600
(R
L
)
and
with
the
4-wire
receive
Figure 10).
port
grounded
(Reference
24. Four-WireIdleChannelNoise.
The 4-wire idle channel noise at
V
TX
is specified with the 2-wire port terminated in 600
(R
L
).
The noise specification is with respect to a 600
impedance
level at V
TX
. The 4-wire receive port is grounded (Reference
Figure 10).
25. Harmonic Distortion (2-Wire to 4-Wire).
The harmonic distor-
tion is measured with the following conditions. E
G
= 0dBm at
1kHz, I
DCMET
= 23mA. Measurement taken at V
TX
. (Reference
Figure 7).
26. Harmonic Distortion (4-Wire to 2-Wire).
The harmonic distor-
tion is measured with the following conditions. E
RX
= 0dBm0.
Vary frequency between 300Hz and 3.4kHz, I
DCMET
= 23mA.
Measurement taken at V
TR
. (Reference Figure 9).
27. ConstantLoopCurrent.
The constant loop current is calculated
using the following equation:
I
L
= 2500 / (R
DC1
+ R
DC2
).
28. StandbyStateLoopCurrent.
The standby state loop current is
calculated using the following equation:
I
L
= [|V
BAT
| - 3] / [R
L
+1800], T
A
= 25
o
C.
29. GroundKeyDetector.
(TRIGGER) Increase the input current to
8mA and verify that DET goes low.
(RESET) Decrease the input current from 17mA to 3mA and
verify that DET goes high.
(Hysteresis) Compare difference between trigger and reset.
30. PowerSupplyRejectionRatio.
Inject
(50Hz to 4kHz) on V
BAT
, V
CC
and V
EE
supplies. PSRR is
computed using the following equation:
a
100mV
RMS
signal
PSRR = 20
log (V
TX
/V
IN
). V
TX
and V
IN
are defined in
Figure 12.
HC5526
相關PDF資料
PDF描述
HC5526CP ITU CO/PABX SLIC with Low Power Standby
HC5526IM ITU CO/PABX SLIC with Low Power Standby
HC5526IP ITU CO/PABX SLIC with Low Power Standby
HC5526 ITU CO/PABX SLIC with Low Power Standby(用戶線接口電路(SLIC))
HC5549CM Low Power SLIC with Battery Switch
相關代理商/技術參數
參數描述
HC5526CM96 制造商:Rochester Electronics LLC 功能描述:- Bulk
HC5526CP 制造商:Rochester Electronics LLC 功能描述:DIGITAL LOOP CARRIER SLIC - Bulk
HC5526EVAL 制造商:Harris Corporation 功能描述:
HC5526IM 制造商:Rochester Electronics LLC 功能描述:- Bulk
HC5526IP 制造商:Rochester Electronics LLC 功能描述:- Bulk
主站蜘蛛池模板: 尼勒克县| 蓬安县| 大足县| 县级市| 东城区| 邹城市| 抚宁县| 汽车| 康马县| 板桥市| 庆安县| 内乡县| 电白县| 望城县| 余江县| 故城县| 万安县| 景洪市| 乐清市| 南漳县| 利津县| 宽城| 鄂州市| 肇庆市| 邢台县| 九龙县| 赤壁市| 山东省| 阿克陶县| 蒙山县| 三明市| 乐昌市| 襄汾县| 阿拉尔市| 舒兰市| 凉城县| 金乡县| 张掖市| 轮台县| 呼图壁县| 台东县|