欧美成人免费电影,国产欧美一区二区三区精品酒店,精品国产a毛片,色网在线免费观看

參數資料
型號: MPSA05ZL1
廠商: ON SEMICONDUCTOR
元件分類: 小信號晶體管
英文描述: 500 mA, 60 V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92
封裝: PLASTIC, TO-226AA, 3 PIN
文件頁數: 27/36頁
文件大?。?/td> 385K
代理商: MPSA05ZL1
9–19
Reliability and Quality Assurance
Motorola Small–Signal Transistors, FETs and Diodes Device Data
147
148
149
150
151
152
153
154
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
0
1
2
3
4
5
6
7
UCL = 152.8
= 150.4
LCL = 148.0
UCL = 7.3
= 3.2
LCL = 0
X
R
Figure 4. Example of Process Control Chart Showing Oven Temperature Data
Where D4, D3, and A2 are constants varying by sample size,
with values for sample sizes from 2 to 10 shown in the
following partial table:
n234
56789
10
D4
3.27
2.57
2.28
2.11
2.00
1.92
1.86
1.82
1.78
D3
*
0.08
0.14
0.18
0.22
A2
1.88
1.02
0.73
0.58
0.48
0.42
0.37
0.34
0.31
*For sample sizes below 7, the LCLR would technically be a negative number;
in those cases there is no lower control limit; this means that for a subgroup size
6, six ‘‘identical’’ measurements would not be unreasonable.
Control charts are used to monitor the variability of critical
process parameters. The R chart shows basic problems with
piece to piece variability related to the process. The X chart can
often identify changes in people, machines, methods, etc. The
source of the variability can be difficult to find and may require
experimental design techniques to identify assignable causes.
Some general rules have been established to help determine
when a process is OUT–OF–CONTROL. Figure 5 shows a
control chart subdivided into zones A, B, and C corresponding
to 3 sigma, 2 sigma, and 1 sigma limits respectively. In Figures
6 through 9 four of the tests that can be used to identify
excessive variability and the presence of assignable causes
are shown. As familiarity with a given process increases, more
subtle tests may be employed successfully.
Once the variability is identified, the cause of the variability
must be determined. Normally, only a few factors have a
significant impact on the total variability of the process. The
importance of correctly identifying these factors is stressed in
the following example. Suppose a process variability depends
on the variance of five factors A, B, C, D, and E. Each has a
variance of 5, 3, 2, 1, and 0.4, respectively.
Since:
σ tot =
σ A2 + σ B2 + σ C2 + σ D2 + σ E2
σ tot =
52 + 32 + 22 + 12 +(0.4)2 = 6.3
If only D is identified and eliminated, then:
σ tot =
52 + 32 + 22 + (0.4)2 = 6.2
This results in less than 2% total variability improvement. If
B, C, and D were eliminated, then:
σ tot =
52 + (0.4)2 = 5.02
This gives a considerably better improvement of 23%. If
only A is identified and reduced from 5 to 2, then:
σ tot =
22 + 32 + 22 + 12 + (0.4)2 = 4.3
Identifying and improving the variability from 5 to 2 yields a
total variability improvement of nearly 40%.
Most techniques may be employed to identify the primary
assignable cause(s). Out–of–control conditions may be
correlated to documented process changes. The product may
be analyzed in detail using best versus worst part comparisons
or Product Analysis Lab equipment. Multi–variance analysis
can be used to determine the family of variation (positional,
critical, or temporal). Lastly, experiments may be run to test
theoretical or factorial analysis. Whatever method is used,
assignable causes must be identified and eliminated in the
most expeditious manner possible.
After assignable causes have been eliminated, new control
limits are calculated to provide a more challenging variablility
criteria for the process. As yields and variability improve, it may
become more difficult to detect improvements because they
become much smaller. When all assignable causes have been
eliminated and the points remain within control limits for 25
groups, the process is said to in a state of control.
相關PDF資料
PDF描述
MPSA06ZL1 500 mA, 80 V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92
MPSA05RL1 500 mA, 60 V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92
MPSA55RLRE 500 mA, 60 V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92
MPSA56RL 500 mA, 80 V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92
MPSA05RLRE 500 mA, 60 V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92
相關代理商/技術參數
參數描述
MPSA06 功能描述:兩極晶體管 - BJT Med Power RoHS:否 制造商:STMicroelectronics 配置: 晶體管極性:PNP 集電極—基極電壓 VCBO: 集電極—發射極最大電壓 VCEO:- 40 V 發射極 - 基極電壓 VEBO:- 6 V 集電極—射極飽和電壓: 最大直流電集電極電流: 增益帶寬產品fT: 直流集電極/Base Gain hfe Min:100 A 最大工作溫度: 安裝風格:SMD/SMT 封裝 / 箱體:PowerFLAT 2 x 2
MPS-A06 制造商:MICRO-ELECTRONICS 制造商全稱:Micro Electronics 功能描述:COMPLEMENTRAY SILICON AF MEDIUM POWER TRANSISTORS
MPSA06 T/R 功能描述:開關晶體管 - 偏壓電阻器 TRANS GP TAPE RADIAL RoHS:否 制造商:ON Semiconductor 配置: 晶體管極性:NPN/PNP 典型輸入電阻器: 典型電阻器比率: 安裝風格:SMD/SMT 封裝 / 箱體: 直流集電極/Base Gain hfe Min:200 mA 最大工作頻率: 集電極—發射極最大電壓 VCEO:50 V 集電極連續電流:150 mA 峰值直流集電極電流: 功率耗散:200 mW 最大工作溫度: 封裝:Reel
MPSA06,116 功能描述:兩極晶體管 - BJT TRANS GP TAPE RADIAL RoHS:否 制造商:STMicroelectronics 配置: 晶體管極性:PNP 集電極—基極電壓 VCBO: 集電極—發射極最大電壓 VCEO:- 40 V 發射極 - 基極電壓 VEBO:- 6 V 集電極—射極飽和電壓: 最大直流電集電極電流: 增益帶寬產品fT: 直流集電極/Base Gain hfe Min:100 A 最大工作溫度: 安裝風格:SMD/SMT 封裝 / 箱體:PowerFLAT 2 x 2
MPSA06,126 功能描述:兩極晶體管 - BJT TRANS GP AMMO RADIAL RoHS:否 制造商:STMicroelectronics 配置: 晶體管極性:PNP 集電極—基極電壓 VCBO: 集電極—發射極最大電壓 VCEO:- 40 V 發射極 - 基極電壓 VEBO:- 6 V 集電極—射極飽和電壓: 最大直流電集電極電流: 增益帶寬產品fT: 直流集電極/Base Gain hfe Min:100 A 最大工作溫度: 安裝風格:SMD/SMT 封裝 / 箱體:PowerFLAT 2 x 2
主站蜘蛛池模板: 靖边县| 名山县| 呼伦贝尔市| 库伦旗| 察哈| 扎赉特旗| 萨迦县| 嘉鱼县| 平安县| 宁陕县| 内江市| 天等县| 鹤壁市| 蓬莱市| 鄂托克前旗| 青浦区| 沁水县| 维西| 桂东县| 满城县| 蒲江县| 临颍县| 和政县| 霍邱县| 遂溪县| 铅山县| 延川县| 景谷| 清水河县| 桐柏县| 固始县| 清新县| 义马市| 长宁区| 津市市| 大理市| 华坪县| 藁城市| 洛隆县| 黄石市| 永年县|