欧美成人免费电影,国产欧美一区二区三区精品酒店,精品国产a毛片,色网在线免费观看

參數(shù)資料
型號: PSD302R-B-90JI
廠商: 意法半導(dǎo)體
英文描述: Low Cost Field Programmable Microcontroller Peripherals
中文描述: 低成本現(xiàn)場可編程微控制器外圍設(shè)備
文件頁數(shù): 10/85頁
文件大小: 691K
代理商: PSD302R-B-90JI
PSD3XX Famly
7
7.0
ZPSD
Background
(cont.)
Integrated Power Management
TM
Operation
Upon each address or logic input change to the ZPSD, the device powers up from low
power standby for a short time. Then the ZPSD consumes only the necessary power to
deliver new logic or memory data to its outputs as a response to the input change. After the
new outputs are stable, the ZPSD latches them and automatically reverts back to standby
mode. The I
CC
current flowing during standby mode and during DC operation is identical
and is only a few microamperes.
The ZPSD automatically reduces its DC current drain to these low levels and does not
require controlling by the CSI (Chip Select Input). Disabling the CSI pin unconditionally
forces the ZPSD to standby mode independent of other input transitions.
The only significant power consumption in the ZPSD occurs during AC operation.
The ZPSD contains the first architecture to apply zero power techniques to memory and
logic blocks.
Figure 2 compares ZPSD zero power operation to the operation of a discrete solution.
A standard microcontroller (MCU) bus cycle usually starts with an ALE (or AS) pulse and
the generation of an address. The ZPSD detects the address transition and powers up for a
short time. The ZPSD then latches the outputs of the PAD, EPROM and SRAM to the new
values. After finishing these operations, the ZPSD shuts off its internal power, entering
standby mode. The time taken for the entire cycle is less than the ZPSD’s “access time.”
The ZPSD will stay in standby mode while its inputs are not changing between bus cycles.
In an alternate system implementation using discrete EPROM, SRAM, and other discrete
components, the system will consume operating power during the entire bus cycle. This
is because the chip select inputs on the memory devices are usually active throughout
the entire cycle. The AC power consumption of the ZPSD may be calculated using the
composite frequency of the MCU address and control signals, as well as any other logic
inputs to the ZPSD.
ALE
DISCRETE EPROM, SRAM & LOGIC
ADDRESS
EPROM
ACCESS
SRAM
ACCESS
EPROM
ACCESS
I
CC
ZPSD
ZPSD
ZPSD
TIME
Figure 2. ZPSDPower Operation vs. Dscrete Implementation
相關(guān)PDF資料
PDF描述
PSD302V-90J Low Cost Field Programmable Microcontroller Peripherals
PSD302V-90JI Low Cost Field Programmable Microcontroller Peripherals
PSD302V-90JM Low Cost Field Programmable Microcontroller Peripherals
PSD302V-A-15J Low Cost Field Programmable Microcontroller Peripherals
PSD302V-A-15JI Low Cost Field Programmable Microcontroller Peripherals
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
PSD302V-15J 制造商:STMICROELECTRONICS 制造商全稱:STMicroelectronics 功能描述:Low Cost Field Programmable Microcontroller Peripherals
PSD302V-15JI 制造商:STMICROELECTRONICS 制造商全稱:STMicroelectronics 功能描述:Low Cost Field Programmable Microcontroller Peripherals
PSD302V-15JM 制造商:STMICROELECTRONICS 制造商全稱:STMicroelectronics 功能描述:Low Cost Field Programmable Microcontroller Peripherals
PSD302V-20J 制造商:STMICROELECTRONICS 制造商全稱:STMicroelectronics 功能描述:Low Cost Field Programmable Microcontroller Peripherals
PSD302V-20JI 制造商:STMICROELECTRONICS 制造商全稱:STMicroelectronics 功能描述:Low Cost Field Programmable Microcontroller Peripherals
主站蜘蛛池模板: 缙云县| 呼图壁县| 七台河市| 昌都县| 明溪县| 慈利县| 广灵县| 诸暨市| 大丰市| 固原市| 泰和县| 清原| 岳阳市| 深州市| 万盛区| 家居| 沈丘县| 剑阁县| 建昌县| 武汉市| 永川市| 洛南县| 额尔古纳市| 望江县| 揭西县| 前郭尔| 山丹县| 尼木县| 石景山区| 五莲县| 昭平县| 乳山市| 镇赉县| 鹤岗市| 木里| 壶关县| 横山县| 会泽县| 慈溪市| 波密县| 调兵山市|