欧美成人免费电影,国产欧美一区二区三区精品酒店,精品国产a毛片,色网在线免费观看

參數資料
型號: PSD302V-70J
廠商: 意法半導體
英文描述: Low Cost Field Programmable Microcontroller Peripherals
中文描述: 低成本現場可編程微控制器外圍設備
文件頁數: 34/85頁
文件大小: 691K
代理商: PSD302V-70J
PSD3XX Famly
31
16.
Power
Management
(cont.)
16.3 Turbo Bit (ZPSD only)
The turbo bit is controlled by the MCU at run-time and is accessed through bit zero of the
Power Management Register (PMR). The PMR is located in CSIOPORT space at offset 10h.
Power Management Register (PMR)
Bit 7
*
1=OFF
Bit 6
*
1=OFF
Bit 5
*
1=OFF
Bit 4
*
1=OFF
Bit 3
*
1=OFF
Bit 2
*
1=OFF
Bit 1
*
1=OFF
Bit 0
Turbo bit
1=OFF
*
Future Configuration bits are reserved and should be set to one when writing to this register.
The default value at reset of all bits in the PMR is logic 0, which means the Turbo feature is
enabled. The PAD logic (PAD A and PAD B) of the PSD will operate at full speed and full
power. When the Turbo Bit is set to logic 1, the Turbo feature is disabled. When disabled,
the PAD logic will draw only standby current (micro-amps) while no PAD inputs change.
Whenever there is a transition on any PAD input (including MCU address and control
signals), the PAD logic will power up and will generate new outputs, latch those outputs,
then go back to Standby Mode. Keep in mind that the signal propagation delay through the
PAD logic increases by 10 nsec for non-V devices, and 20 nsec for V devices while in
non-turbo mode. Use of the Turbo Bit does not affect the operation or power consumption
of memory.
Tremendous power savings are possible by setting the Turbo Bit and going into non-turbo
mode. This essentially reduces the DC power consumption of the PAD logic to zero. It also
reduces the AC power consumption of PAD logic when the composite frequency of all PAD
inputs change at a rate less than 40 MHz for non-V devices, and less than 20 MHz for V
devices. Use Figures 14 and 15 to calculate AC and DC current usage in the PAD with the
Turbo Bit on and off. You will need to know the number of product terms that are used in
your design and you will have to calculate the composite frequency of all signals entering
the PAD logic.
16.4 Number of Product Terms in the PADLogic
The number of product terms used in your design relates directly to how much current the
PADs will draw. Therefore, minimizing this number will be in your best interest if power is a
concern for you. Basically, the amount of product terms your design will use is based on the
following (see Figure 4):
Each of the EPROM block selects, ES0-ES7 uses one product term (for a total of 8).
The CSIOPORT select uses one product term.
If your part has SRAM (non-R versions), the SRAM select RS0 uses one product term.
The Track Mode control signals (CSADIN, CSADOUT1, and CSADOUT2) each use
one product term if you use these signals.
Port B, pins PB0-PB3 are allocated four product terms each if used as outputs.
Port B, pins PB4-PB7 are allocated two product terms each if used as outputs.
Port C, pins PC0-PC2 are allocated one product term each if used as outputs.
Given the above product term allocation, keep the following points in mind when calculating
the total number of product terms your design will require:
1) The EPROM block selects, CSIOPORT select, and SRAM select will use a product term
whether you use these blocks or not. This means you start out with 10 product terms,
and go up from there.
2) For Port B, if you use a pin as an output and your logic equation requires only one
product term, you still have to include all the available product terms for that pin for
power consumption, even though only one product term is specified. For example, if the
output equation for pin PB0 uses just one product term, you will have to count PB0 as
contributing four product terms to the overall count. With this in mind, you should use
Port C for the outputs that only require one product term and PB4-7 for outputs that
require two product terms. Use pins PB0-3 if you need outputs requiring more than two
product terms or you have run out of outputs.
3) The following PSD functions do not consume product terms: MCU I/O mode, Latched
Address Output, and PAD inputs (logic or address).
相關PDF資料
PDF描述
PSD302V-70JI Low Cost Field Programmable Microcontroller Peripherals
PSD303R-70JM Circular Connector; Body Material:Aluminum; Series:PT01; No. of Contacts:41; Connector Shell Size:20; Connecting Termination:Solder; Circular Shell Style:Cable Receptacle; Circular Contact Gender:Pin; Insert Arrangement:20-41
PSD303V-15J Circular Connector; MIL SPEC:MIL-C-26482, Series I, Solder; Body Material:Aluminum; Series:PT01; No. of Contacts:15; Connector Shell Size:14; Connecting Termination:Solder; Circular Shell Style:Cable Receptacle; Body Style:Straight
PSD303V-15JI Low Cost Field Programmable Microcontroller Peripherals
PSD303V-15JM Low Cost Field Programmable Microcontroller Peripherals
相關代理商/技術參數
參數描述
PSD302V-70JI 制造商:STMICROELECTRONICS 制造商全稱:STMicroelectronics 功能描述:Low Cost Field Programmable Microcontroller Peripherals
PSD302V-70JM 制造商:STMICROELECTRONICS 制造商全稱:STMicroelectronics 功能描述:Low Cost Field Programmable Microcontroller Peripherals
PSD302V-90J 制造商:STMICROELECTRONICS 制造商全稱:STMicroelectronics 功能描述:Low Cost Field Programmable Microcontroller Peripherals
PSD302V-90JI 制造商:STMICROELECTRONICS 制造商全稱:STMicroelectronics 功能描述:Low Cost Field Programmable Microcontroller Peripherals
PSD302V-90JM 制造商:STMICROELECTRONICS 制造商全稱:STMicroelectronics 功能描述:Low Cost Field Programmable Microcontroller Peripherals
主站蜘蛛池模板: 穆棱市| 濮阳市| 武强县| 云林县| 开鲁县| 江孜县| 马尔康县| 山西省| 四平市| 石林| 冕宁县| 盘山县| 观塘区| 靖安县| 义马市| 尖扎县| 汪清县| 朝阳区| 安丘市| 苍南县| 定陶县| 泉州市| 蓝山县| 南岸区| 屏山县| 绥中县| 类乌齐县| 赤峰市| 西和县| 平舆县| 同江市| 安岳县| 泾阳县| 馆陶县| 克什克腾旗| 长岭县| 密云县| 庄河市| 江油市| 海林市| 广汉市|