欧美成人免费电影,国产欧美一区二区三区精品酒店,精品国产a毛片,色网在线免费观看

參數資料
型號: AD7731
廠商: Analog Devices, Inc.
英文描述: Low Noise, High Throughput 24-Bit Sigma-Delta ADC
中文描述: 低噪聲,高吞吐量的24位Σ-Δ模數轉換器
文件頁數: 4/44頁
文件大小: 411K
代理商: AD7731
AD7731
NOT ES
T emperature Range: –40
°
C to +85
°
C.
2
Sample tested during initial release.
3
No missing codes performance with CHP = 0 and SK IP = 1 is 22 bits.
4
T he offset (or zero) numbers with CHP = 0 can be up to 1 mV precalibration. Internal zero-scale calibration reduces this to 2
μ
V typical. Offset numbers with CHP = 1 are typically
3
μ
V precalibration. Internal zero-scale calibration reduces this by about 1
μ
V. System zero-scale calibration reduces offset numbers with CHP = 0 and CHP = 1 to the order of the
noise. Gain errors can be up to 3000 ppm precalibration with CHP = 0 and CHP = 1. Performing internal full-scale calibrations on all input ranges except the 20 mV and 40 mV input
range reduces the gain error to less than 100 ppm. When operating on the 20 mV or 40 mV range, an internal full-scale calibration should be performed on the 80 mV input range with
a resulting gain error of less than 250 ppm. System full-scale calibration reduces the gain error on all input ranges to the order of the noise. Positive and Negative Full-Scale Errors can
be calculated from the offset and gain errors.
5
T hese numbers are generated during life testing of the part.
6
Positive Full-Scale Error includes Zero-Scale Errors (Unipolar Offset Error or Bipolar Zero Error) and applies to both unipolar and bipolar input ranges. See T erminology.
7
Recalibration at any temperature will remove these errors.
8
Full-scale drift includes Zero-Scale Drift (Unipolar Offset Drift or Bipolar Zero Drift) and applies to both unipolar and bipolar input ranges.
9
Gain Error is a measure of the difference between the measured and the ideal span between any two points in the transfer function. T he two points use to calculate the gain error are
positive full-scale and negative full-scale. See T erminology.
10
Gain Error Drift is a span drift and is effectively the drift of the part if zero-scale calibrations only were performed.
11
Power Supply Rejection and Common-Mode Rejection are given here for the upper and lower input voltage ranges. T he rejection can be approximated to varying linearly (in dBs)
between these values for the other input ranges.
12
T he analog input voltage range on the AIN(+) inputs is given here with respect to the voltage on the respective AIN(–) input.
13
T he common-mode voltage range on the input pairs applies provided the absolute input voltage specification is obeyed.
14
T he common-mode voltage range on the reference input pair (REF IN(+) and REF IN(–)) applies provided the absolute input voltage specification is obeyed.
15
T hese logic output levels apply to the MCLK OUT output only when it is loaded with a single CMOS load.
16
V
refers to DV
for all logic outputs expect D0 and D1 where it refers to AV
DD
. In other words, the output logic high for these two outputs is determined by AV
DD
.
17
See Burnout Current section.
18
After calibration, if the input voltage exceeds positive full scale, the converter will output all 1s. If the input is less than negative full scale, then the device outputs all 0s.
19
T hese calibration and span limits apply provided the absolute input voltage specification is obeyed. T he offset calibration limit applies to both the unipolar zero point and the bipolar
zero point.
Specifications subject to change without notice.
TIMNGCHARACTERISTICS
1, 2
f
CLK IN
= 4.9152 MHz; Input Logic 0 = 0 V, Logic 1 = DV
DD
unless otherwse noted)
–4–
REV. 0
Limit at T
MIN
, T
MAX
(B Version)
Parameter
Units
Conditions/Comments
Master Clock Range
1
5
50
50
MHz min
MHz max
ns min
ns min
For Specified Performance
t
1
t
2
Read Operation
t
3
t
4
t
54
SYNC
Pulse Width
RESET
Pulse Width
0
0
0
60
80
0
60
80
100
100
0
10
80
100
ns min
ns min
ns min
ns max
ns max
ns min
ns max
ns max
ns min
ns min
ns min
ns min
ns max
ns max
RDY
to
CS
Setup T ime
CS
Falling Edge to SCLK Active Edge Setup T ime
3
SCLK Active Edge to Data Valid Delay
3
DV
DD
= +4.75 V to +5.25 V
DV
DD
= +2.7 V to +3.3 V
CS
Falling Edge to Data Valid Delay
3
DV
DD
= +4.75 V to +5.25 V
DV
DD
= +2.7 V to +3.3 V
SCLK High Pulse Width
SCLK Low Pulse Width
CS
Rising Edge to SCLK Inactive Edge Hold T ime
3
Bus Relinquish T ime after SCLK Inactive Edge
3
t
5A4, 5
t
6
t
7
t
8
t
96
t
10
Write Operation
t
11
t
12
t
13
t
14
t
15
t
16
SCLK Active Edge to
RDY
High
3, 7
0
30
25
100
100
0
ns min
ns min
ns min
ns min
ns min
ns min
CS
Falling Edge to SCLK Active Edge Setup T ime
3
Data Valid to SCLK Edge Setup T ime
Data Valid to SCLK Edge Hold T ime
SCLK High Pulse Width
SCLK Low Pulse Width
CS
Rising Edge to SCLK Edge Hold T ime
NOT ES
1
Sample tested during initial release to ensure compliance. All input signals are specified with tr = tf = 5 ns (10% to 90% of DV
DD
) and timed from a voltage level of 1.6 V.
2
See Figures 15 and 16.
3
SCLK active edge is falling edge of SCLK with POL = 1; SCLK active edge is rising edge of SCLK with POL = 0.
4
T hese numbers are measured with the load circuit of Figure 1 and defined as the time required for the output to cross the V
or V
limits.
5
T his specification only comes into play if
CS
goes low while SCLK is low (POL = 1) or if
CS
goes low while SCLK is high (POL = 0). It is required primarily for interfacing to
DSP machines.
6
T hese numbers are derived from the measured time taken by the data output to change 0.5 V when loaded with the circuit of Figure 1. T he measured number is then extrapo-
lated back to remove effects of charging or discharging the 50 pF capacitor. T his means that the times quoted in the timing characteristics are the true bus relinquish times of the
part and as such are independent of external bus loading capacitances.
7
RDY
returns high after the first read from the device after an output update. T he same data can be read again, if required, while
RDY
is high, although care should be taken that
subsequent reads do not occur close to the next output update.
(AV
DD
= +4.75V to +5.25V; DV
DD
= +2.7V to +5.25 V; AGND = DGND = 0 V;
相關PDF資料
PDF描述
AD7731BN Low Noise, High Throughput 24-Bit Sigma-Delta ADC
AD7731BR Low Noise, High Throughput 24-Bit Sigma-Delta ADC
AD7731BRU Low Noise, High Throughput 24-Bit Sigma-Delta ADC
AD7731EB Precision, Zero-Drift Instrumentation Amplifier; Package: SO; No of Pins: 16; Temperature Range: 0°C to +70°C
AD7732 2-Channel, +-10 V Input Range, High Throughput, 24-Bit SIGMA- ADC
相關代理商/技術參數
參數描述
AD7731BN 功能描述:IC ADC 24BIT SIGMA-DELTA 24-DIP RoHS:否 類別:集成電路 (IC) >> 數據采集 - 模數轉換器 系列:- 產品培訓模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標準包裝:2,500 系列:- 位數:12 采樣率(每秒):3M 數據接口:- 轉換器數目:- 功率耗散(最大):- 電壓電源:- 工作溫度:- 安裝類型:表面貼裝 封裝/外殼:SOT-23-6 供應商設備封裝:SOT-23-6 包裝:帶卷 (TR) 輸入數目和類型:-
AD7731BNZ 功能描述:IC ADC 24BIT SIGMA-DELTA 24DIP RoHS:是 類別:集成電路 (IC) >> 數據采集 - 模數轉換器 系列:- 標準包裝:1,000 系列:- 位數:12 采樣率(每秒):300k 數據接口:并聯 轉換器數目:1 功率耗散(最大):75mW 電壓電源:單電源 工作溫度:0°C ~ 70°C 安裝類型:表面貼裝 封裝/外殼:24-SOIC(0.295",7.50mm 寬) 供應商設備封裝:24-SOIC 包裝:帶卷 (TR) 輸入數目和類型:1 個單端,單極;1 個單端,雙極
AD7731BR 功能描述:IC ADC 24BIT 24-SOIC RoHS:否 類別:集成電路 (IC) >> 數據采集 - 模數轉換器 系列:- 標準包裝:1,000 系列:- 位數:12 采樣率(每秒):300k 數據接口:并聯 轉換器數目:1 功率耗散(最大):75mW 電壓電源:單電源 工作溫度:0°C ~ 70°C 安裝類型:表面貼裝 封裝/外殼:24-SOIC(0.295",7.50mm 寬) 供應商設備封裝:24-SOIC 包裝:帶卷 (TR) 輸入數目和類型:1 個單端,單極;1 個單端,雙極
AD7731BR-REEL 功能描述:IC ADC 24BIT SIGMA-DELTA 24-SOIC RoHS:否 類別:集成電路 (IC) >> 數據采集 - 模數轉換器 系列:- 標準包裝:1,000 系列:- 位數:12 采樣率(每秒):300k 數據接口:并聯 轉換器數目:1 功率耗散(最大):75mW 電壓電源:單電源 工作溫度:0°C ~ 70°C 安裝類型:表面貼裝 封裝/外殼:24-SOIC(0.295",7.50mm 寬) 供應商設備封裝:24-SOIC 包裝:帶卷 (TR) 輸入數目和類型:1 個單端,單極;1 個單端,雙極
AD7731BR-REEL7 功能描述:IC ADC 24BIT SIGMA-DELTA 24-SOIC RoHS:否 類別:集成電路 (IC) >> 數據采集 - 模數轉換器 系列:- 標準包裝:1,000 系列:- 位數:12 采樣率(每秒):300k 數據接口:并聯 轉換器數目:1 功率耗散(最大):75mW 電壓電源:單電源 工作溫度:0°C ~ 70°C 安裝類型:表面貼裝 封裝/外殼:24-SOIC(0.295",7.50mm 寬) 供應商設備封裝:24-SOIC 包裝:帶卷 (TR) 輸入數目和類型:1 個單端,單極;1 個單端,雙極
主站蜘蛛池模板: 潍坊市| 呼伦贝尔市| 岳阳市| 库尔勒市| 塔河县| 巴彦县| 荥阳市| 汶上县| 巴林左旗| 松阳县| 彰化县| 鹤壁市| 伊宁县| 长垣县| 新和县| 鱼台县| 江油市| 濉溪县| 三穗县| 广灵县| 太仓市| 修水县| 绥江县| 甘德县| 房产| 枣强县| 乌兰浩特市| 石城县| 海安县| 调兵山市| 上犹县| 太原市| 阜宁县| 高碑店市| 措美县| 南阳市| 大港区| 安宁市| 娄底市| 万荣县| 措美县|