欧美成人免费电影,国产欧美一区二区三区精品酒店,精品国产a毛片,色网在线免费观看

參數資料
型號: AD8331ARQ-REEL
廠商: ANALOG DEVICES INC
元件分類: 消費家電
英文描述: Ultralow Noise VGAs with Preamplifier and Programmable RIN
中文描述: SPECIALTY CONSUMER CIRCUIT, PDSO20
封裝: MO-137AD, QSOP-20
文件頁數: 24/32頁
文件大小: 482K
代理商: AD8331ARQ-REEL
AD8331/AD8332
Table 4. Clamp Resistor Values
Clamp Level
(V p-p)
Rev. C | Page 24 of 32
Clamp Resistor Value (k)
HILO = LO
1.21
2.74
4.75
7.5
11
16.9
26.7
49.9
100
HILO = HI
2.21
4.02
6.49
9.53
14.7
23.2
39.2
73.2
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.4
Output Filtering and Series Resistor
Requirements
To ensure stability at the high end of the gain control range,
series resistors or ferrite beads are recommended for the
outputs when driving large capacitive loads, or circuits on other
boards,. These components can be part of the external
noise filter.
Recommended resistor values are 84.5 for LO gain mode and
100 for HI gain mode (see Figure 66) and are placed near
Pins VOH and VOL. Lower value resistors are permissible for
applications with nearby loads or with gains less than 40 dB.
Lower values are best selected empirically.
An antialiasing noise filter is typically used with an ADC. Filter
requirements are application dependent.
When the ADC resides on a separate board, the majority of
filter components should be placed nearby to suppress noise
picked up between boards and mitigates charge kickback from
the ADC inputs. Any series resistance beyond that required for
output stability should be placed on the ADC board. Figure 70
shows a second order low-pass filter with a bandwidth of
20 MHz. The capacitor is chosen in conjunction with the 10 pF
input capacitance of the ADC.
18pF
OPTIONAL
BACKPLANE
84.5
0.1
μ
F
0.1
μ
F
1.5
μ
H
1.5
μ
H
158
158
84.5
ADC
Figure 70. 20 MHz Second-Order Low-Pass Filter
DRIVING ADCS
The output drive will accommodate a wide range of ADCs. The
noise floor requirements of the VGA will depend on a number
of application factors, including bit resolution, sampling rate,
full-scale voltage, and the bandwidth of the noise/antialias filter.
The output noise floor and gain range can be adjusted by
selecting HI or LO gain mode.
The relative noise and distortion performance of the two gain
modes can be compared in Figure 21 and Figure 27 through
Figure 37. The 48 nV/√Hz noise floor of the LO gain mode is
suited to converters with higher sampling rates or resolutions
(such as 12 bits). Both gain modes can accommodate ADC full-
scale voltages as high as 4 V p-p. Since distortion performance
remains favorable for output voltages as high as 4 V p-p (see
Figure 32), it is possible to lower the output-referred noise even
further by using a resistive attenuator (or transformer) at the
output. The circuit in Figure 71 has an output full-scale range of
2 V p-p, a gain range of –10.5 dB to +37.5 dB, and an output
noise floor of 24 nV/√Hz, making it suitable for some 14-bit
ADC applications.
VOH
VOL
LPF
4V p-p DIFF,
48n V/
187
2V p-p DIFF,
24n V/
2:1
374
HZ
187
ADC
AD6644
HZ
0
Figure 71. Adjusting the Noise Floor for 14-Bit ADCs
OVERLOAD
These devices respond gracefully to large signals that overload
its input stage and to normal signals that overload the VGA
when the gain is set unexpectedly high. Each stage is designed
for clean-limited overload waveforms and fast recovery when
gain setting or input amplitude is reduced.
Signals larger than ±275 mV at the LNA input are clipped to
5 V p-p differential prior to the input of the VGA. Figure 44
shows the response to a 1 V p-p input burst. The symmetric
overload waveform is important for applications, such as CW
Doppler ultrasound, where the spectrum of the LNA outputs
during overload is critical. The input stage is also designed to
accommodate signals as high as ±2.5 V without triggering the
slow-settling ESD input protection diodes.
Both stages of the VGA are susceptible to overload. Postamp
limiting is more common and results in the clean-limited
output characteristics found in Figure 45. Under more extreme
conditions, the X-AMP will overload, causing the minor glitches
evident in Figure 46. Recovery is fast in all cases. The graph in
Figure 72 summarizes the combinations of input signal and
gain that lead to the different types of overload.
相關PDF資料
PDF描述
AD8331ARQ-REEL7 Ultralow Noise VGAs with Preamplifier and Programmable RIN
AD8341 1.5 GHz to 2.4 GHz RF Vector Modulator
AD8341-EVAL 1.5 GHz to 2.4 GHz RF Vector Modulator
AD8341ACPZ-REEL72 1.5 GHz to 2.4 GHz RF Vector Modulator
AD8341ACPZ-WP1 1.5 GHz to 2.4 GHz RF Vector Modulator
相關代理商/技術參數
參數描述
AD8331ARQ-REEL7 功能描述:IC VGA SINGLE W/PREAMP 20-SSOP RoHS:否 類別:集成電路 (IC) >> 線性 - 放大器 - 專用 系列:X-AMP® 產品培訓模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標準包裝:60 系列:- 類型:可變增益放大器 應用:CATV 安裝類型:表面貼裝 封裝/外殼:20-WQFN 裸露焊盤 供應商設備封裝:20-TQFN-EP(5x5) 包裝:托盤
AD8331ARQZ 功能描述:IC VGA SINGLE W/PREAMP 20-QSOP RoHS:是 類別:集成電路 (IC) >> 線性 - 放大器 - 專用 系列:X-AMP® 產品培訓模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標準包裝:60 系列:- 類型:可變增益放大器 應用:CATV 安裝類型:表面貼裝 封裝/外殼:20-WQFN 裸露焊盤 供應商設備封裝:20-TQFN-EP(5x5) 包裝:托盤
AD8331ARQZ 制造商:Analog Devices 功能描述:IC AMP VARIABLE GAIN 8331 QSOP20
AD8331ARQZ-R7 功能描述:IC AMP VAR GAIN 1CHAN 20QSOP RoHS:是 類別:集成電路 (IC) >> 線性 - 放大器 - 專用 系列:X-AMP® 產品培訓模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標準包裝:60 系列:- 類型:可變增益放大器 應用:CATV 安裝類型:表面貼裝 封裝/外殼:20-WQFN 裸露焊盤 供應商設備封裝:20-TQFN-EP(5x5) 包裝:托盤
AD8331ARQZ-RL 功能描述:IC VGA SINGLE W/PREAMP 20QSOP RoHS:是 類別:集成電路 (IC) >> 線性 - 放大器 - 專用 系列:X-AMP® 產品培訓模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標準包裝:60 系列:- 類型:可變增益放大器 應用:CATV 安裝類型:表面貼裝 封裝/外殼:20-WQFN 裸露焊盤 供應商設備封裝:20-TQFN-EP(5x5) 包裝:托盤
主站蜘蛛池模板: 郯城县| 安乡县| 贺州市| 南康市| 榆林市| 赤壁市| 淮安市| 南溪县| 和政县| 遵化市| 镶黄旗| 呼伦贝尔市| 含山县| 集贤县| 繁峙县| 北辰区| 大厂| 巫溪县| 原阳县| 双鸭山市| 合山市| 峨眉山市| 杨浦区| 米脂县| 绥中县| 绥阳县| 河东区| 曲阜市| 晋州市| 新野县| 怀宁县| 五指山市| 六盘水市| 华坪县| 鄂州市| 文山县| 河源市| 海南省| 宁阳县| 抚宁县| 麦盖提县|