欧美成人免费电影,国产欧美一区二区三区精品酒店,精品国产a毛片,色网在线免费观看

參數資料
型號: MPSA70RLRA
廠商: ON SEMICONDUCTOR
元件分類: 小信號晶體管
英文描述: 100 mA, 40 V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92
封裝: PLASTIC, TO-226AA, 3 PIN
文件頁數: 28/37頁
文件大小: 490K
代理商: MPSA70RLRA
9–19
Reliability and Quality Assurance
Motorola Small–Signal Transistors, FETs and Diodes Device Data
147
148
149
150
151
152
153
154
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
0
1
2
3
4
5
6
7
UCL = 152.8
= 150.4
LCL = 148.0
UCL = 7.3
= 3.2
LCL = 0
X
R
Figure 4. Example of Process Control Chart Showing Oven Temperature Data
Where D4, D3, and A2 are constants varying by sample size,
with values for sample sizes from 2 to 10 shown in the
following partial table:
n234
56789
10
D4
3.27
2.57
2.28
2.11
2.00
1.92
1.86
1.82
1.78
D3
*
0.08
0.14
0.18
0.22
A2
1.88
1.02
0.73
0.58
0.48
0.42
0.37
0.34
0.31
*For sample sizes below 7, the LCLR would technically be a negative number;
in those cases there is no lower control limit; this means that for a subgroup size
6, six ‘‘identical’’ measurements would not be unreasonable.
Control charts are used to monitor the variability of critical
process parameters. The R chart shows basic problems with
piece to piece variability related to the process. The X chart can
often identify changes in people, machines, methods, etc. The
source of the variability can be difficult to find and may require
experimental design techniques to identify assignable causes.
Some general rules have been established to help determine
when a process is OUT–OF–CONTROL. Figure 5 shows a
control chart subdivided into zones A, B, and C corresponding
to 3 sigma, 2 sigma, and 1 sigma limits respectively. In Figures
6 through 9 four of the tests that can be used to identify
excessive variability and the presence of assignable causes
are shown. As familiarity with a given process increases, more
subtle tests may be employed successfully.
Once the variability is identified, the cause of the variability
must be determined. Normally, only a few factors have a
significant impact on the total variability of the process. The
importance of correctly identifying these factors is stressed in
the following example. Suppose a process variability depends
on the variance of five factors A, B, C, D, and E. Each has a
variance of 5, 3, 2, 1, and 0.4, respectively.
Since:
σ tot =
σ A2 + σ B2 + σ C2 + σ D2 + σ E2
σ tot =
52 + 32 + 22 + 12 +(0.4)2 = 6.3
If only D is identified and eliminated, then:
σ tot =
52 + 32 + 22 + (0.4)2 = 6.2
This results in less than 2% total variability improvement. If
B, C, and D were eliminated, then:
σ tot =
52 + (0.4)2 = 5.02
This gives a considerably better improvement of 23%. If
only A is identified and reduced from 5 to 2, then:
σ tot =
22 + 32 + 22 + 12 + (0.4)2 = 4.3
Identifying and improving the variability from 5 to 2 yields a
total variability improvement of nearly 40%.
Most techniques may be employed to identify the primary
assignable cause(s). Out–of–control conditions may be
correlated to documented process changes. The product may
be analyzed in detail using best versus worst part comparisons
or Product Analysis Lab equipment. Multi–variance analysis
can be used to determine the family of variation (positional,
critical, or temporal). Lastly, experiments may be run to test
theoretical or factorial analysis. Whatever method is used,
assignable causes must be identified and eliminated in the
most expeditious manner possible.
After assignable causes have been eliminated, new control
limits are calculated to provide a more challenging variablility
criteria for the process. As yields and variability improve, it may
become more difficult to detect improvements because they
become much smaller. When all assignable causes have been
eliminated and the points remain within control limits for 25
groups, the process is said to in a state of control.
相關PDF資料
PDF描述
MPSA70RL 100 mA, 40 V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92
MPSA70RL1 100 mA, 40 V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92
MPSA92J18Z 500 mA, 300 V, PNP, Si, SMALL SIGNAL TRANSISTOR
MPSA92L34Z 500 mA, 300 V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92
MPSA92D75Z 500 mA, 300 V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92
相關代理商/技術參數
參數描述
MPSA70RLRM 功能描述:兩極晶體管 - BJT 100mA 40V PNP RoHS:否 制造商:STMicroelectronics 配置: 晶體管極性:PNP 集電極—基極電壓 VCBO: 集電極—發射極最大電壓 VCEO:- 40 V 發射極 - 基極電壓 VEBO:- 6 V 集電極—射極飽和電壓: 最大直流電集電極電流: 增益帶寬產品fT: 直流集電極/Base Gain hfe Min:100 A 最大工作溫度: 安裝風格:SMD/SMT 封裝 / 箱體:PowerFLAT 2 x 2
MPSA70RLRMG 功能描述:兩極晶體管 - BJT 100mA 40V PNP RoHS:否 制造商:STMicroelectronics 配置: 晶體管極性:PNP 集電極—基極電壓 VCBO: 集電極—發射極最大電壓 VCEO:- 40 V 發射極 - 基極電壓 VEBO:- 6 V 集電極—射極飽和電壓: 最大直流電集電極電流: 增益帶寬產品fT: 直流集電極/Base Gain hfe Min:100 A 最大工作溫度: 安裝風格:SMD/SMT 封裝 / 箱體:PowerFLAT 2 x 2
MPSA75 制造商:CENTRAL 制造商全稱:Central Semiconductor Corp 功能描述:Small Signal Transistors
MPSA75_06 制造商:ONSEMI 制造商全稱:ON Semiconductor 功能描述:Darlington Transistors PNP Silicon
MPSA75RLRA 功能描述:達林頓晶體管 500mA 40V PNP RoHS:否 制造商:Texas Instruments 配置:Octal 晶體管極性:NPN 集電極—發射極最大電壓 VCEO:50 V 發射極 - 基極電壓 VEBO: 集電極—基極電壓 VCBO: 最大直流電集電極電流:0.5 A 最大集電極截止電流: 功率耗散: 最大工作溫度:+ 150 C 安裝風格:SMD/SMT 封裝 / 箱體:SOIC-18 封裝:Reel
主站蜘蛛池模板: 宜宾市| 湛江市| 湖北省| 新丰县| 威信县| 正定县| 北流市| 平阴县| 梅州市| 北票市| 韶山市| 射阳县| 威海市| 滨州市| 侯马市| 长宁区| 稷山县| 玉林市| 永福县| 天祝| 青神县| 福鼎市| 崇左市| 莲花县| 永胜县| 富蕴县| 乌鲁木齐县| 永泰县| 商河县| 松溪县| 泌阳县| 大安市| 马关县| 惠来县| 庆元县| 盐城市| 铜鼓县| 红河县| 大关县| 昌吉市| 赞皇县|