欧美成人免费电影,国产欧美一区二区三区精品酒店,精品国产a毛片,色网在线免费观看

參數(shù)資料
型號: P87LPC762
廠商: NXP Semiconductors N.V.
英文描述: Low power, low price, low pin count 20 pin microcontroller with 2 kbyte OTP
中文描述: 低功耗,低價格,低管腳數(shù)的2字節(jié)檢察官辦公室20引腳微控制器
文件頁數(shù): 17/57頁
文件大小: 312K
代理商: P87LPC762
Philips Semiconductors
Preliminary data
87LPC762
Low power, low price, low pin count (20 pin)
microcontroller with 2 kbyte OTP
2001 Oct 26
14
ARL
“Arbitration Loss” is 1 when transmit Active was set, but
this device lost arbitration to another transmitter.
Transmit Active is cleared when ARL is 1. There are
four separate cases in which ARL is set.
1. If the program sent a 1 or repeated start, but another
device sent a 0, or a stop, so that SDA is 0 at the rising
edge of SCL. (If the other device sent a stop, the setting
of ARL will be followed shortly by STP being set.)
2. If the program sent a 1, but another device sent a
repeated start, and it drove SDA low before SCL
could be driven low. (This type of ARL is always
accompanied by STR = 1.)
3. In master mode, if the program sent a repeated start,
but another device sent a 1, and it drove SCL low
before this device could drive SDA low.
4. In master mode, if the program sent stop, but it could
not be sent because another device sent a 0.
STR
“STaRt” is set to a 1 when an I
2
C start condition is
detected at a non-idle slave or at a master. (STR is not
set when an idle slave becomes active due to a start
bit; the slave has nothing useful to do until the rising
edge of SCL sets DRDY.)
STP
“SToP” is set to 1 when an I
2
C stop condition is
detected at a non-idle slave or at a master. (STP is not
set for a stop condition at an idle slave.)
MASTER
“MASTER” is 1 if this device is currently a master on
the I
2
C. MASTER is set when MASTRQ is 1 and the
bus is not busy (i.e., if a start bit hasn’t been
received since reset or a “Timer I” time-out, or if a stop
has been received since the last start). MASTER is
cleared when ARL is set, or after the software writes
MASTRQ = 0 and then XSTP = 1.
Writing I2CON
Typically, for each bit in an I
2
C message, a service routine waits for
ATN = 1. Based on DRDY, ARL, STR, and STP, and on the current
bit position in the message, it may then write I2CON with one or
more of the following bits, or it may read or write the I2DAT register.
CXA
Writing a 1 to “Clear Xmit Active” clears the Transmit
Active state. (Reading the I2DAT register also does this.)
Regarding Transmit Active
Transmit Active is set by writing the I2DAT register, or by writing
I2CON with XSTR = 1 or XSTP = 1. The I
2
C interface will only drive
the SDA line low when Transmit Active is set, and the ARL bit will
only be set to 1 when Transmit Active is set. Transmit Active is
cleared by reading the I2DAT register, or by writing I2CON with CXA
= 1. Transmit Active is automatically cleared when ARL is 1.
IDLE
Writing 1 to “IDLE” causes a slave’s I
2
C hardware to
ignore the I
2
C until the next start condition (but if
MASTRQ is 1, then a stop condition will cause this
device to become a master).
CDR
Writing a 1 to “Clear Data Ready” clears DRDY.
(Reading or writing the I2DAT register also does this.)
CARL
Writing a 1 to “Clear Arbitration Loss” clears the ARL bit.
CSTR
Writing a 1 to “Clear STaRt” clears the STR bit.
CSTP
Writing a 1 to “Clear SToP” clears the STP bit. Note that
if one or more of DRDY, ARL, STR, or STP is 1, the low
time of SCL is stretched until the service routine
responds by clearing them.
XSTR
Writing 1s to “Xmit repeated STaRt” and CDR tells the
I
2
C hardware to send a repeated start condition. This
should only be at a master. Note that XSTR need not
and should not be used to send an “initial”
(non-repeated) start; it is sent automatically by the I
2
C
hardware. Writing XSTR = 1 includes the effect of
writing I2DAT with XDAT = 1; it sets Transmit Active
and releases SDA to high during the SCL low time.
After SCL goes high, the I
2
C hardware waits for the
suitable minimum time and then drives SDA low to
make the start condition.
XSTP
Writing 1s to “Xmit SToP” and CDR tells the I
2
C
hardware to send a stop condition. This should only be
done at a master. If there are no more messages to
initiate, the service routine should clear the MASTRQ
bit in I2CFG to 0 before writing XSTP with 1. Writing
XSTP = 1 includes the effect of writing I2DAT with
XDAT = 0; it sets Transmit Active and drives SDA low
during the SCL low time. After SCL goes high, the I
2
C
hardware waits for the suitable minimum time and then
releases SDA to high to make the stop condition.
相關(guān)PDF資料
PDF描述
P87LPC768 Low Power, Low System Cost 80C51 MCU with ADC and PWM
P87LPC768BN Low Power, Low System Cost 80C51 MCU with ADC and PWM
P88-3004 TONER VACUUM STD 220/240V
P88-3005 TONER FILTER STD 0.3 MICRON
P88-3010 TONER VACUUM XPRS 220/240V
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
P87LPC762BD 制造商:PHILIPS 制造商全稱:NXP Semiconductors 功能描述:Low power, low price, low pin count 20 pin microcontroller with 2 kbyte OTP
P87LPC762BD,512 功能描述:8位微控制器 -MCU 80C51 2K/128 OTP RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時鐘頻率:50 MHz 程序存儲器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT
P87LPC762BD512 制造商:NXP Semiconductors 功能描述:IC 8BIT MCU 80C51 20MHZ SOIC-20
P87LPC762BDH 功能描述:8位微控制器 -MCU 80C51 2K/128 OTP RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時鐘頻率:50 MHz 程序存儲器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT
P87LPC762BDH,512 功能描述:8位微控制器 -MCU 80C51 2K/128 OTP RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時鐘頻率:50 MHz 程序存儲器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風(fēng)格:SMD/SMT
主站蜘蛛池模板: 汝城县| 澄江县| 娄烦县| 江达县| 施甸县| 台湾省| 浮山县| 西盟| 阜新市| 大石桥市| 靖边县| 台东县| 红原县| 孟州市| 乡城县| 泊头市| 漾濞| 应城市| 桂阳县| 增城市| 吴忠市| 高尔夫| 嘉兴市| 隆安县| 都江堰市| 高平市| 阳曲县| 怀来县| 阜宁县| 三都| 河东区| 镶黄旗| 康定县| 河池市| 汉寿县| 隆化县| 曲靖市| 鸡东县| 隆子县| 菏泽市| 象山县|