欧美成人免费电影,国产欧美一区二区三区精品酒店,精品国产a毛片,色网在线免费观看

參數資料
型號: FAN5059
廠商: Fairchild Semiconductor Corporation
英文描述: High Performance Programmable Synchronous
中文描述: 高性能可編程同步
文件頁數: 14/18頁
文件大小: 206K
代理商: FAN5059
FAN5059
PRODUCT SPECIFICATION
14
REV. 1.0.4 8/14/03
with I
Detect
50μA, I
SC
is the desired current limit, and
R
DS,on
the high-side MOSFET’s on resistance. Remember to
make the R
S
large enough to include the effects of initial tol-
erance and temperature variation on the MOSFET’s R
DS,on
.
Alternately, use of a sense resistor in series with the source
of the MOSFET eliminates this source of inaccuracy in the
current limit.
As an example, Figure 4 shows the typical characteristic of
the DC-DC converter circuit with an FDB6030L high-side
MOSFET (R
DS
= 20m
maximum at 25°C * 1.25 at 75°C =
25m
) and a 8.2K
R
S
.
Figure 4. FAN5059 Short Circuit Characteristic
The converter exhibits a normal load regulation characteristic
until the voltage across the MOSFET exceeds the internal
short circuit threshold of 50μA * 8.2K
= 410mV, which
occurs at 410mV/25m
= 16.4A. (Note that this current limit
level can be as high as 410mV/15m
= 27A, if the MOSFET
has typical R
DS,on
rather than maximum, and is at 25°C).
At this point, the internal comparator trips and signals the con-
troller to discharge the softstart capacitor. This causes a drastic
reduction in the output voltage as the load regulation collapses
into the short circuit control mode. With a 40m
output short,
the voltage is reduced to 16.4A * 40m
= 650mV. The output
voltage does not return to its nominal value until the output
current is reduced to a value within the safe operating ranges
for the DC-DC converter.
If any of the linear regulator outputs are loaded heavily
enough that their output voltage drops below 80% of nominal
for >30μsec, all FAN5059 outputs, including the switcher, are
shut off and remain off until power is recycled.
Schottky Diode Selection
The application circuit of Figure 1 shows a Schottky diode,
D1, which is used as a free-wheeling diode to assure that the
body-diode in Q2 does not conduct when the upper MOSFET
is turning off and the lower MOSFET is turning on. It is
undesirable for this diode to conduct because its high forward
voltage drop and long reverse recovery time degrades efficiency,
and so the Schottky provides a shunt path for the current.
Since this time duration is very short, the selection criterion
for the diode is that the forward voltage of the Schottky at
the output current should be less than the forward voltage of
the MOSFET’s body diode.
Output Filter Capacitors
The output bulk capacitors of a converter help determine its
output ripple voltage and its transient response. It has already
been seen in the section on selecting an inductor that the ESR
helps set the minimum inductance, and the capacitance value
helps set the maximum inductance. For most converters,
however, the number of capacitors required is determined by
the transient response and the output ripple voltage, and these
are determined by the ESR and not the capacitance value.
That is, in order to achieve the necessary ESR to meet the
transient and ripple requirements, the capacitance value
required is already very large.
The most commonly used choice for output bulk capacitors is
aluminum electrolytics, because of their low cost and low ESR.
The only type of aluminum capacitor used should be those that
have an ESR rated at 100kHz. Consult Application Bulletin
AB-14 for detailed information on output capacitor selection.
The output capacitance should also include a number of
small value ceramic capacitors placed as close as possible to
the processor; 0.1μF and 0.01μF are recommended values.
Input Filter
The DC-DC converter design may include an input inductor
between the system +5V supply and the converter input as
shown in Figure 5. This inductor serves to isolate the +5V
supply from the noise in the switching portion of the DC-DC
converter, and to limit the inrush current into the input capac-
itors during power up. A value of 2.5μH is recommended.
It is necessary to have some low ESR aluminum electrolytic
capacitors at the input to the converter. These capacitors
deliver current when the high side MOSFET switches on.
Figure 5 shows 3 x 1000μF, but the exact number required
will vary with the speed and type of the processor. For the
top speed Katmai and Coppermine, the capacitors should be
rated to take 9A and 6A of ripple current respectively.
Capacitor ripple current rating is a function of temperature,
and so the manufacturer should be contacted to find out the
ripple current rating at the expected operational temperature.
For details on the design of an input filter, refer to Applica-
tions Bulletin AB-15.
Figure 5. Input Filter
V
O
(
0 5 10 15 20 25
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
CPU Output Voltage vs. Output Current
2.5
μ
H
5V
0.1
μ
F
1000
μ
F, 10V
Electrolytic
Vin
相關PDF資料
PDF描述
FAN5063 ACPI Dual Switch Controller
FAN5063M Power Supply Switching Circuit
FAN5066 Ultra Low Voltage Synchronous DC-DC Controller
FAN5066M
FAN5066MTC
相關代理商/技術參數
參數描述
FAN5059_BBA3026B WAF 制造商:Fairchild Semiconductor Corporation 功能描述:
FAN5059M 功能描述:開關變換器、穩壓器與控制器 DC-DC Controller HP Programmable Sync RoHS:否 制造商:Texas Instruments 輸出電壓:1.2 V to 10 V 輸出電流:300 mA 輸出功率: 輸入電壓:3 V to 17 V 開關頻率:1 MHz 工作溫度范圍: 安裝風格:SMD/SMT 封裝 / 箱體:WSON-8 封裝:Reel
FAN5059M_Q 功能描述:開關變換器、穩壓器與控制器 DC-DC Controller HP Programmable Sync RoHS:否 制造商:Texas Instruments 輸出電壓:1.2 V to 10 V 輸出電流:300 mA 輸出功率: 輸入電壓:3 V to 17 V 開關頻率:1 MHz 工作溫度范圍: 安裝風格:SMD/SMT 封裝 / 箱體:WSON-8 封裝:Reel
FAN5059MX 功能描述:開關變換器、穩壓器與控制器 DC-DC Controller HP Programmable Sync RoHS:否 制造商:Texas Instruments 輸出電壓:1.2 V to 10 V 輸出電流:300 mA 輸出功率: 輸入電壓:3 V to 17 V 開關頻率:1 MHz 工作溫度范圍: 安裝風格:SMD/SMT 封裝 / 箱體:WSON-8 封裝:Reel
FAN5061 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Current-Mode SMPS Controller
主站蜘蛛池模板: 防城港市| 荔波县| 平邑县| 茂名市| 岳阳县| 辽源市| 吉水县| 新绛县| 泗水县| 上杭县| 灵川县| 桑植县| 边坝县| 沧源| 邢台市| 南木林县| 阳信县| 深水埗区| 南丹县| 龙游县| 东城区| 河东区| 余干县| 石柱| 新乡县| 峨边| 康定县| 连城县| 富锦市| 铜陵市| 丁青县| 广丰县| 三台县| 英超| 石狮市| 聂拉木县| 盘锦市| 桐庐县| 平阴县| 平舆县| 胶州市|