欧美成人免费电影,国产欧美一区二区三区精品酒店,精品国产a毛片,色网在线免费观看

參數資料
型號: 71M6543G-IGT/F
廠商: MAXIM INTEGRATED PRODUCTS INC
元件分類: 模擬信號調理
英文描述: SPECIALTY ANALOG CIRCUIT, PQFP100
封裝: LEAD FREE, LQFP-100
文件頁數: 149/157頁
文件大小: 2178K
代理商: 71M6543G-IGT/F
71M6543F/H and 71M6543G/GH Data Sheet
v1.2
2008–2011 Teridian Semiconductor Corporation
91
compensated digitally using a second-order polynomial function of temperature. The 71M6543 and
71M6xx3 feature temperature sensors for the purposes of temperature compensating their corresponding
VREF. The compensation computations must be implemented in MPU firmware.
Referring to Figure 31, the VADC8 (VA), VADC9 (VB) and VADC10 (VC) voltage sensors are always
directly connected to the 71M6543. Thus, the precision of the voltage sensors is primarily affected by
VREF in the 71M6543. The temperature coefficient of the resistors used to implement the voltage dividers
for the voltage sensors (see Figure 27) determine the behavior of the voltage division ratio with respect to
temperature. It is recommended to use resistors with low temperature coefficients, while forming the entire
voltage divider using resistors belonging to the same technology family, in order to minimize the temperature
dependency of the voltage division ratio. The resistors must also have suitable voltage ratings.
The 71M6543 also may have one local current shunt sensor that is connected directly to it via the IADC0-
IADC1 input pins, and therefore this local current sensor is also affected by the VREF in the 71M6543.
The shunt current sensor resistance has a temperature dependency, which also may require
compensation, depending on the required accuracy class.
The IADC2-IADC3, IADC4-IADC5 and IADC6-IADC7 current sensors are isolated by the 71M6xx3 and
depend on the VREF of the 71M6xx3, plus the variation of the corresponding remote shunt current sensor
with temperature.
The MPU has the responsibility of computing the necessary sample gain compensation values required for
each sensor channel based on the sensed temperature. Teridian provides demonstration code that
implements the GAIN_ADJx compensation equation shown below. The resulting GAIN_ADJx values are
stored by the MPU in five CE RAM locations GAIN_ADJ0-GAIN_ADJ5 (CE RAM 0x40-0x44). The
demonstration code thus provides a suitable implementation of temperature compensation, but other
methods are possible in MPU firmware by utilizing the on-chip temperature sensors while storing the
sample gain adjustment results in the CE RAM GAIN_ADJx storage locations for use by the CE. The
demonstration code maintains five separate sets of PPMC and PPMC2 coefficients and computes five
separate GAIN_ADJx values based on the sensed temperature using the equation below:
23
2
14
2
_
100
2
_
10
16385
_
PPMC
X
TEMP
PPMC
X
TEMP
ADJx
GAIN
+
+
=
The GAIN_ADJx values stored by the MPU in CE RAM are used by the CE to gain adjust (i.e., multiply)
the sample in each corresponding sensor channel. A GAIN_ADJx value of 16,384 (i.e., 2
14)corresponds to
unity gain, while values less than 16,384 attenuate the samples and values greater than 16,384 amplify
the samples.
In the above equation, TEMP_X is the deviation from nominal or calibration temperature expressed in
multiples of 0.1 °C. The 10x and 100x factors seen in the above equation are due to 0.1
oC scaling of
TEMP_X. For example, if the calibration (reference) temperature is 22
oC and the measured temperature
is 27
oC, then 10*TEMP_X = (27-22) x 10 = 50 (decimal), which represents a +5 oC deviation from 22oC.
In the demonstration code, TEMP_X is calculated in the MPU from the STEMP[10:0] temperature sensor
reading using the equation provided below and is scaled in 0.1°C units. See 2.5.5 71M6543 Temperature
Sensor on page 55 for the equation to calculate temperature in degrees °C from the STEMP[10:0] value.
Table 67 shows the five GAIN_ADJx equation output storage locations and the voltage or current sensor
channels for which they compensate for the 1 Local / 3 Remote configuration shown in Figure 31.
Table 67: GAIN_ADJn Compensation Channels (Figure 2, Figure 31, Table 1)
Gain Adjustment Output
CE RAM Address
Sensor Channel(s)
(pin names)
Compensation For:
GAIN_ADJ0
0x40
VADC8 (VA)
VADC9 (VB)
VADC10 (VC)
VREF in 71M6543 and Voltage Divider
Resistors
GAIN_ADJ1
0x41
IADC0-IADC1
VREF in 71M6543 and Shunt
(Neutral Current)
GAIN_ADJ2
0x42
IADC2-IADC3
VREF in 71M6xx3 and Shunt
(Phase A)
GAIN_ADJ3
0x43
IADC4-IADC5
VREF in 71M6xx3 and Shunt
(Phase B)
相關PDF資料
PDF描述
722BG 2-OUTPUT DC-DC REG PWR SUPPLY MODULE
722MG 2-OUTPUT DC-DC REG PWR SUPPLY MODULE
73M1903-IGV SPECIALTY CONSUMER CIRCUIT, PQFP32
73M1903-IM SPECIALTY CONSUMER CIRCUIT, QCC32
73M1903-IGV/F SPECIALTY CONSUMER CIRCUIT, PQFP32
相關代理商/技術參數
參數描述
71M6543G-IGTR/F 功能描述:計量片上系統 - SoC Precision Energy Meter IC RoHS:否 制造商:Maxim Integrated 核心:80515 MPU 處理器系列:71M6511 類型:Metering SoC 最大時鐘頻率:70 Hz 程序存儲器大小:64 KB 數據 RAM 大小:7 KB 接口類型:UART 可編程輸入/輸出端數量:12 片上 ADC: 安裝風格:SMD/SMT 封裝 / 箱體:LQFP-64 封裝:Reel
71M6543GT-IGT/F 制造商:Maxim Integrated Products 功能描述:3-PHASE, 128KK, PRES TEMP SENSOR - Bulk
71M6543GT-IGTR/F 制造商:Maxim Integrated Products 功能描述:3-PHASE, 128KK, PRES TEMP SENSOR - Tape and Reel
71M6543H 制造商:MAXIM 制造商全稱:Maxim Integrated Products 功能描述:Selectable Gain of 1 or 8 for One Current Energy Meter ICs Metrology Compensation
71M6543H-IGT/F 功能描述:IC ENERGY METER 100-LQFP 制造商:maxim integrated 系列:Single Converter Technology? 包裝:托盤 零件狀態:停產 輸入阻抗:- 測量誤差:0.1% 電壓 - I/O 高:2V 電壓 - I/O 低:0.8V 電流 - 電源:- 電壓 - 電源:3 V ~ 3.6 V 表計類型:3 相 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:100-LQFP 供應商器件封裝:100-LQFP(14x14) 標準包裝:90
主站蜘蛛池模板: 滨州市| 上虞市| 西吉县| 平南县| 巴马| 金门县| 刚察县| 香格里拉县| 宜城市| 遵化市| 五台县| 乐山市| 翼城县| 汪清县| 桂林市| 乐安县| 甘孜县| 新民市| 贺兰县| 沁源县| 来宾市| 祁连县| 双城市| 八宿县| 延安市| 马关县| 涪陵区| 贺州市| 长子县| 泾川县| 密云县| 开远市| 永修县| 博野县| 宁强县| 电白县| 阆中市| 新营市| 云林县| 开远市| 万载县|