欧美成人免费电影,国产欧美一区二区三区精品酒店,精品国产a毛片,色网在线免费观看

參數資料
型號: A40MX04-FPL44
元件分類: FPGA
英文描述: FPGA, 547 CLBS, 6000 GATES, 48 MHz, PQCC44
封裝: PLASTIC, LCC-44
文件頁數: 31/124頁
文件大小: 3142K
代理商: A40MX04-FPL44
40MX and 42MX FPGA Families
1- 8
v6.1
Power Dissipation
The general power consumption of MX devices is made
up of static and dynamic power and can be expressed
with the following equation:
General Power Equation
P = [ICCstandby + ICCactive] * VCCI + IOL* VOL* N
+ IOH * (VCCI – VOH) * M
where:
ICCstandby is the current flowing when no inputs or
outputs are changing.
ICCactive is the current flowing due to CMOS
switching.
IOL, IOH are TTL sink/source currents.
VOL, VOH are TTL level output voltages.
N equals the number of outputs driving TTL loads to
VOL.
M equals the number of outputs driving TTL loads to
VOH.
Accurate values for N and M are difficult to determine
because they depend on the family type, on design
details, and on the system I/O. The power can be divided
into two components: static and active.
Static Power Component
The static power due to standby current is typically a
small component of the overall power consumption.
Standby power is calculated for commercial, worst-case
conditions. The static power dissipation by TTL loads
depends on the number of outputs driving, and on the
DC load current. For instance, a 32-bit bus sinking 4mA at
0.33V will generate 42mW with all outputs driving LOW,
and 140mW with all outputs driving HIGH. The actual
dissipation will average somewhere in between, as I/Os
switch states with time.
Active Power Component
Power dissipation in CMOS devices is usually dominated
by the dynamic power dissipation. Dynamic power
consumption is frequency-dependent and is a function of
the logic and the external I/O. Active power dissipation
results from charging internal chip capacitances of the
interconnect, unprogrammed antifuses, module inputs,
and module outputs, plus external capacitances due to
PC board traces and load device inputs. An additional
component of the active power dissipation is the totem
pole current in the CMOS transistor pairs. The net effect
can be associated with an equivalent capacitance that
can be combined with frequency and voltage to
represent active power dissipation.
The power dissipated by a CMOS circuit can be expressed
by the equation:
Power (W) = CEQ * VCCA
2 * F(1)
where:
CEQ =Equivalent capacitance expressed in picofarads (pF)
VCCA =Power supply in volts (V)
F =Switching frequency in megahertz (MHz)
Equivalent Capacitance
Equivalent capacitance is calculated by measuring
ICCactive at a specified frequency and voltage for each
circuit component of interest. Measurements have been
made over a range of frequencies at a fixed value of VCC.
Equivalent capacitance is frequency-independent, so the
results can be used over a wide range of operating
conditions. Equivalent capacitance values are shown
below.
CEQ Values for Actel MX FPGAs
Modules (CEQM)3.5
Input Buffers (CEQI)6.9
Output Buffers (CEQO)18.2
Routed Array Clock Buffer Loads (CEQCR)1.4
To calculate the active power dissipated from the
complete design, the switching frequency of each part of
the logic must be known. The equation below shows a
piece-wise linear summation over all components.
Power = VCCA
2 * [(m x C
EQM * fm)Modules +
(n *
CEQI * fn)Inputs + (p * (CEQO + CL) *
fp)outputs +
0.5 * (q1 * CEQCR * fq1)routed_Clk1 + (r1 *
fq1)routed_Clk1 +
0.5 * (q2 * CEQCR * fq2)routed_Clk2 + (r2 *
fq2)routed_Clk2 (2)
where:
m
= Number
of
logic
modules
switching
at
frequency fm
n
= Number
of
input
buffers
switching
at
frequency fn
p
= Number
of
output
buffers
switching
at
frequency fp
q1
= Number of clock loads on the first routed array
clock
q2
= Number of clock loads on the second routed
array clock
r1
= Fixed capacitance due to first routed array
clock
r2
= Fixed capacitance due to second routed array
clock
相關PDF資料
PDF描述
A40MX04-FPL68X79 FPGA, 547 CLBS, 6000 GATES, 48 MHz, PQCC68
A40MX04-FPL68 FPGA, 547 CLBS, 6000 GATES, 48 MHz, PQCC68
A40MX04-FPL84X79 FPGA, 547 CLBS, 6000 GATES, 48 MHz, PQCC84
A40MX04-FPL84 FPGA, 547 CLBS, 6000 GATES, 48 MHz, PQCC84
A40MX04-FPQ100X79 FPGA, 547 CLBS, 6000 GATES, 48 MHz, PQFP100
相關代理商/技術參數
參數描述
A40MX04-FPL44I 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Field Programmable Gate Array (FPGA)
A40MX04-FPL44M 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Field Programmable Gate Array (FPGA)
A40MX04-FPL68 功能描述:IC FPGA MX SGL CHIP 6K 68-PLCC RoHS:否 類別:集成電路 (IC) >> 嵌入式 - FPGA(現場可編程門陣列) 系列:MX 標準包裝:152 系列:IGLOO PLUS LAB/CLB數:- 邏輯元件/單元數:792 RAM 位總計:- 輸入/輸出數:120 門數:30000 電源電壓:1.14 V ~ 1.575 V 安裝類型:表面貼裝 工作溫度:-40°C ~ 85°C 封裝/外殼:289-TFBGA,CSBGA 供應商設備封裝:289-CSP(14x14)
A40MX04-FPL68I 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Field Programmable Gate Array (FPGA)
A40MX04-FPL68M 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Field Programmable Gate Array (FPGA)
主站蜘蛛池模板: 江川县| 潮州市| 介休市| 东乌珠穆沁旗| 黑水县| 栾城县| 康保县| 新民市| 玛沁县| 道真| 尉犁县| 日喀则市| 北流市| 漳浦县| 泽普县| 潜江市| 和静县| 长子县| 滕州市| 息烽县| 仙游县| 黄平县| 秦皇岛市| 来宾市| 中西区| 广宗县| 温州市| 厦门市| 双鸭山市| 德化县| 祁门县| 云安县| 西华县| 蒲江县| 保靖县| 武义县| 洛南县| 凤山县| 乐陵市| 时尚| 福贡县|