欧美成人免费电影,国产欧美一区二区三区精品酒店,精品国产a毛片,色网在线免费观看

參數資料
型號: AD7865AS-1
廠商: ANALOG DEVICES INC
元件分類: ADC
英文描述: Four-Channel, Simultaneous Sampling, Fast, 14-Bit ADC
中文描述: 4-CH 14-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PQFP44
封裝: PLASTIC, QFP-44
文件頁數: 14/19頁
文件大小: 195K
代理商: AD7865AS-1
AD7865
–14–
REV. A
Using an External Clock
With the
H
/S SEL and INT/
EXT
CLK pins tied to Logic 1, the
AD7865 will expect to be driven from an external clock. The
highest external clock frequency allowed is 5 MHz. This means
a conversion time of 3.2
μ
s compared to 2.4
μ
s using the inter-
nal clock. In some instances, however, it may be useful to use an
external clock when high throughput rates are not required. For
example, two or more AD7865s may be synchronized by using
the same external clock for all devices. In this way there is no
latency between output logic signals like
EOC
due to differences
in the frequency of the internal clock oscillators. Figure 10
shows how the various logic outputs are synchronized to the CLK
signal. The first falling edge of CLKIN must not occur until
200 ns after a conversion has been initiated (rising edge of
CONVST
), at which point BUSY will go high. The AD7865
will then convert the analog input signal on the first selected
channel (see Selecting a Conversion Sequence) at a rate deter-
mined by the CLKIN. No external events will occur until the
14th falling edge of CLKIN. The data register output address
is then reset to point to Data Register 1 and FRSTDATA goes
high. This first conversion is complete on the 15th falling edge
of the CLKIN (indicated by
EOC
going low) and the result
from this conversion is loaded into Data Register 1.
EOC
goes
high again on the 16th falling edge of CLKIN. Figure 10 shows
a
RD
pulse occurring when
EOC
is low, enabling the conversion
result in Data Register 1 onto the data bus. The next 16 pulses
of CLKIN will convert the analog input signal on the second
selected channel and so on until all selected channels have been
converted. BUSY and
EOC
will go low on the 15th falling edge
of the last conversion sequence and
EOC
will return high on the
16th falling edge.
Standby Mode Operation
The AD7865 has a Standby Mode whereby the device can be
placed in a low current consumption mode (3
μ
A typ). The
AD7865 is placed in standby by bringing the logic input
STBY
low. The AD7865 can be powered up again for normal opera-
tion by bringing
STBY
logic high. The output data buffers are
still operational while the AD7865 is in standby. This means the
user can still continue to access the conversion results while the
AD7865 is in standby. This feature can be used to reduce the
average power consumption in a system using low throughput
rates. To reduce the average power consumption the AD7865 can
be placed in standby at the end of each conversion sequence,
i.e., when BUSY goes low and taken out of standby again prior
to the start of the next conversion sequence. The time it takes
the AD7865 to come out of standby is called the “wake-up”
time. This wake-up time will limit the maximum throughput
rate at which the AD7865 can be operated when powering down
between conversions. The AD7865 will wake up in less than
1
μ
s when using an external reference. When the internal refer-
ence is used, the wake-up time depends on the amount of time
the AD7865 spends in standby mode. For standby times of less
than 10 ms the AD7865 will wake up in less than 5
μ
s (see Fig-
ure 11). For standby times greater than this some or all of the
charge on the external reference capacitor will have leaked away
and the wake-up time will be dependent on how long it takes to
recharge. For standby times less than one second the wake-up
time will be less than 1 ms. Even if the charge has been completely
depleted the wake-up time will typically be less than 10 ms.
STANDBY TIME –
m
s
0
0
2500
5000
7500
10000
2.5
5
W
m
s
Figure 11. Wake-Up Time vs. Standby Time Using the On-
Chip Reference
FIRST CONVERSION
COMPLETE
BUSY
RD
EOC
FRSTDATA
CONVST
CLK
t
18
2
3 4 5 6 7
8 9 10 11 12 13 14 15 16 1
2 3 4 5 6 7 8 9 10 11 12 13 14
1
15 16
16
15
LAST CONVERSION
COMPLETE
Figure 10. Using an External Clock
相關PDF資料
PDF描述
AD7865AS-2 Four-Channel, Simultaneous Sampling, Fast, 14-Bit ADC
AD7865AS-3 Four-Channel, Simultaneous Sampling, Fast, 14-Bit ADC
AD7865BS-1 Four-Channel, Simultaneous Sampling, Fast, 14-Bit ADC
AD7865BS-2 Four-Channel, Simultaneous Sampling, Fast, 14-Bit ADC
AD7865BS-3 Four-Channel, Simultaneous Sampling, Fast, 14-Bit ADC
相關代理商/技術參數
參數描述
AD7865AS-1REEL 制造商:Analog Devices 功能描述:ADC Single SAR 350ksps 14-bit Parallel 44-Pin MQFP T/R 制造商:Rochester Electronics LLC 功能描述:4 CH. SIMULTANEOUS BIPOLAR,14-B ADC I.C. - Tape and Reel
AD7865AS2 制造商:AD 功能描述:*
AD7865AS-2 制造商:Analog Devices 功能描述:ADC Single SAR 350ksps 14-bit Parallel 44-Pin MQFP 制造商:Analog Devices 功能描述:IC 14-BIT ADC
AD7865AS-2REEL 制造商:Analog Devices 功能描述:ADC Single SAR 350ksps 14-bit Parallel 44-Pin MQFP T/R 制造商:Analog Devices 功能描述:ADC SGL SAR 350KSPS 14BIT PARALLEL 44MQFP - Tape and Reel
AD7865AS-3 制造商:Analog Devices 功能描述:ADC Single SAR 350ksps 14-bit Parallel 44-Pin MQFP 制造商:Rochester Electronics LLC 功能描述:4 CH. SIMULTANEOUS BIPOLAR,14-B ADC I.C. - Bulk 制造商:Analog Devices 功能描述:IC 14-BIT ADC
主站蜘蛛池模板: 景泰县| 介休市| 武定县| 重庆市| 稷山县| 苏尼特左旗| 丁青县| 镇原县| 白玉县| 常熟市| 麟游县| 东阿县| 宝鸡市| 农安县| 南乐县| 冀州市| 沅陵县| 鹤壁市| 天峨县| 收藏| 南汇区| 金乡县| 当雄县| 丰宁| 比如县| 洛隆县| 和平县| 蓝山县| 武鸣县| 曲阜市| 虎林市| 绥芬河市| 绥中县| 静海县| 张北县| 怀集县| 星子县| 吉林市| 长垣县| 西宁市| 常熟市|