欧美成人免费电影,国产欧美一区二区三区精品酒店,精品国产a毛片,色网在线免费观看

參數資料
型號: MPSH81
廠商: ON SEMICONDUCTOR
元件分類: 小信號晶體管
英文描述: Si, PNP, RF SMALL SIGNAL TRANSISTOR, TO-92
封裝: PLASTIC, TO-226AA, 3 PIN
文件頁數: 26/35頁
文件大小: 320K
代理商: MPSH81
9–19
Reliability and Quality Assurance
Motorola Small–Signal Transistors, FETs and Diodes Device Data
147
148
149
150
151
152
153
154
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
0
1
2
3
4
5
6
7
UCL = 152.8
= 150.4
LCL = 148.0
UCL = 7.3
= 3.2
LCL = 0
X
R
Figure 4. Example of Process Control Chart Showing Oven Temperature Data
Where D4, D3, and A2 are constants varying by sample size,
with values for sample sizes from 2 to 10 shown in the
following partial table:
n234
56789
10
D4
3.27
2.57
2.28
2.11
2.00
1.92
1.86
1.82
1.78
D3
*
0.08
0.14
0.18
0.22
A2
1.88
1.02
0.73
0.58
0.48
0.42
0.37
0.34
0.31
*For sample sizes below 7, the LCLR would technically be a negative number;
in those cases there is no lower control limit; this means that for a subgroup size
6, six ‘‘identical’’ measurements would not be unreasonable.
Control charts are used to monitor the variability of critical
process parameters. The R chart shows basic problems with
piece to piece variability related to the process. The X chart can
often identify changes in people, machines, methods, etc. The
source of the variability can be difficult to find and may require
experimental design techniques to identify assignable causes.
Some general rules have been established to help determine
when a process is OUT–OF–CONTROL. Figure 5 shows a
control chart subdivided into zones A, B, and C corresponding
to 3 sigma, 2 sigma, and 1 sigma limits respectively. In Figures
6 through 9 four of the tests that can be used to identify
excessive variability and the presence of assignable causes
are shown. As familiarity with a given process increases, more
subtle tests may be employed successfully.
Once the variability is identified, the cause of the variability
must be determined. Normally, only a few factors have a
significant impact on the total variability of the process. The
importance of correctly identifying these factors is stressed in
the following example. Suppose a process variability depends
on the variance of five factors A, B, C, D, and E. Each has a
variance of 5, 3, 2, 1, and 0.4, respectively.
Since:
σ tot =
σ A2 + σ B2 + σ C2 + σ D2 + σ E2
σ tot =
52 + 32 + 22 + 12 +(0.4)2 = 6.3
If only D is identified and eliminated, then:
σ tot =
52 + 32 + 22 + (0.4)2 = 6.2
This results in less than 2% total variability improvement. If
B, C, and D were eliminated, then:
σ tot =
52 + (0.4)2 = 5.02
This gives a considerably better improvement of 23%. If
only A is identified and reduced from 5 to 2, then:
σ tot =
22 + 32 + 22 + 12 + (0.4)2 = 4.3
Identifying and improving the variability from 5 to 2 yields a
total variability improvement of nearly 40%.
Most techniques may be employed to identify the primary
assignable cause(s). Out–of–control conditions may be
correlated to documented process changes. The product may
be analyzed in detail using best versus worst part comparisons
or Product Analysis Lab equipment. Multi–variance analysis
can be used to determine the family of variation (positional,
critical, or temporal). Lastly, experiments may be run to test
theoretical or factorial analysis. Whatever method is used,
assignable causes must be identified and eliminated in the
most expeditious manner possible.
After assignable causes have been eliminated, new control
limits are calculated to provide a more challenging variablility
criteria for the process. As yields and variability improve, it may
become more difficult to detect improvements because they
become much smaller. When all assignable causes have been
eliminated and the points remain within control limits for 25
groups, the process is said to in a state of control.
相關PDF資料
PDF描述
MPSL01ZL1 150 mA, 120 V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92
MPSL01RLRA 150 mA, 120 V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92
MPSL01RL1 150 mA, 120 V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92
MPSL01RLRM 150 mA, 120 V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92
MPSL01RLRE 150 mA, 120 V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92
相關代理商/技術參數
參數描述
MPSH81 D26Z 制造商:Fairchild Semiconductor Corporation 功能描述:Trans GP BJT PNP 20V 0.05A 3-Pin TO-92 T/R 制造商:Fairchild Semiconductor 功能描述:Trans GP BJT PNP 20V 0.05A 3-Pin TO-92 T/R
MPSH81/D75Z 制造商:Fairchild Semiconductor Corporation 功能描述:
MPSH81_D26Z 功能描述:射頻雙極小信號晶體管 PNP RF Transistor RoHS:否 制造商:NXP Semiconductors 配置:Single 晶體管極性:NPN 最大工作頻率:7000 MHz 集電極—發射極最大電壓 VCEO:15 V 發射極 - 基極電壓 VEBO:2 V 集電極連續電流:0.15 A 功率耗散:1000 mW 直流集電極/Base Gain hfe Min: 最大工作溫度:+ 150 C 封裝 / 箱體:SOT-223 封裝:Reel
MPSH81_D27Z 功能描述:射頻雙極小信號晶體管 PNP RF Transistor RoHS:否 制造商:NXP Semiconductors 配置:Single 晶體管極性:NPN 最大工作頻率:7000 MHz 集電極—發射極最大電壓 VCEO:15 V 發射極 - 基極電壓 VEBO:2 V 集電極連續電流:0.15 A 功率耗散:1000 mW 直流集電極/Base Gain hfe Min: 最大工作溫度:+ 150 C 封裝 / 箱體:SOT-223 封裝:Reel
MPSH81_D75Z 功能描述:射頻雙極小信號晶體管 PNP RF Transistor RoHS:否 制造商:NXP Semiconductors 配置:Single 晶體管極性:NPN 最大工作頻率:7000 MHz 集電極—發射極最大電壓 VCEO:15 V 發射極 - 基極電壓 VEBO:2 V 集電極連續電流:0.15 A 功率耗散:1000 mW 直流集電極/Base Gain hfe Min: 最大工作溫度:+ 150 C 封裝 / 箱體:SOT-223 封裝:Reel
主站蜘蛛池模板: 扶风县| 长沙市| 原平市| 玛纳斯县| 上蔡县| 天全县| 通道| 房产| 定州市| 花垣县| 太谷县| 佛山市| 扶余县| 斗六市| 荔浦县| 肇东市| 仁怀市| 永兴县| 镇沅| 皋兰县| 海宁市| 开远市| 石首市| 清涧县| 普兰店市| 桓台县| 曲松县| 乌鲁木齐市| 迁安市| 本溪市| 阿鲁科尔沁旗| 宜州市| 安阳市| 西昌市| 塔城市| 色达县| 海门市| 潢川县| 无棣县| 盘山县| 肇州县|