欧美成人免费电影,国产欧美一区二区三区精品酒店,精品国产a毛片,色网在线免费观看

參數資料
型號: XC2S200-6PQG208C
廠商: Xilinx Inc
文件頁數: 37/99頁
文件大小: 0K
描述: IC SPARTAN-II FPGA 200K 208-PQFP
標準包裝: 24
系列: Spartan®-II
LAB/CLB數: 1176
邏輯元件/單元數: 5292
RAM 位總計: 57344
輸入/輸出數: 140
門數: 200000
電源電壓: 2.375 V ~ 2.625 V
安裝類型: 表面貼裝
工作溫度: 0°C ~ 85°C
封裝/外殼: 208-BFQFP
供應商設備封裝: 208-PQFP(28x28)
產品目錄頁面: 599 (CN2011-ZH PDF)
其它名稱: 122-1317
Spartan-II FPGA Family: Functional Description
DS001-2 (v2.8) June 13, 2008
Module 2 of 4
Product Specification
42
R
property. This property could have one of the following
seven values.
DRIVE=2
DRIVE=4
DRIVE=6
DRIVE=8
DRIVE=12 (Default)
DRIVE=16
DRIVE=24
Design Considerations
Reference Voltage (VREF) Pins
Low-voltage I/O standards with a differential amplifier input
buffer require an input reference voltage (VREF). Provide
the VREF as an external signal to the device.
The voltage reference signal is "banked" within the device
on a half-edge basis such that for all packages there are
eight independent VREF banks internally. See Figure 36,
page 39 for a representation of the I/O banks. Within each
bank approximately one of every six I/O pins is
automatically configured as a VREF input.
Within each VREF bank, any input buffers that require a
VREF signal must be of the same type. Output buffers of any
type and input buffers can be placed without requiring a
reference voltage within the same VREF bank.
Output Drive Source Voltage (VCCO) Pins
Many of the low voltage I/O standards supported by
Versatile I/Os require a different output drive source voltage
(VCCO). As a result each device can often have to support
multiple output drive source voltages.
The VCCO supplies are internally tied together for some
packages. The VQ100 and the PQ208 provide one
combined VCCO supply. The TQ144 and the CS144
packages provide four independent VCCO supplies. The
FG256 and the FG456 provide eight independent VCCO
supplies.
Output buffers within a given VCCO bank must share the
same output drive source voltage. Input buffers for LVTTL,
LVCMOS2, PCI33_3, and PCI 66_3 use the VCCO voltage
for Input VCCO voltage.
Transmission Line Effects
The delay of an electrical signal along a wire is dominated
by the rise and fall times when the signal travels a short
distance. Transmission line delays vary with inductance
and capacitance, but a well-designed board can experience
delays of approximately 180 ps per inch.
Transmission line effects, or reflections, typically start at
1.5" for fast (1.5 ns) rise and fall times. Poor (or
non-existent) termination or changes in the transmission
line impedance cause these reflections and can cause
additional delay in longer traces. As system speeds
continue to increase, the effect of I/O delays can become a
limiting factor and therefore transmission line termination
becomes increasingly more important.
Termination Techniques
A variety of termination techniques reduce the impact of
transmission line effects.
The following lists output termination techniques:
None
Series
Parallel (Shunt)
Series and Parallel (Series-Shunt)
Input termination techniques include the following:
None
Parallel (Shunt)
These termination techniques can be applied in any
combination. A generic example of each combination of
termination methods appears in Figure 41.
Simultaneous Switching Guidelines
Ground bounce can occur with high-speed digital ICs when
multiple outputs change states simultaneously, causing
undesired transient behavior on an output, or in the internal
logic. This problem is also referred to as the Simultaneous
Switching Output (SSO) problem.
Ground bounce is primarily due to current changes in the
combined inductance of ground pins, bond wires, and
Figure 41: Overview of Standard Input and Output
Termination Methods
DS001_41_032300
Unterminated
Double Parallel Terminated
Series-Parallel Terminated Output
Driving a Parallel Terminated Input
Series Terminated Output Driving
a Parallel Terminated Input
Unterminated Output Driving
a Parallel Terminated Input
V
TT
V
REF
V
REF
V
REF
V
REF
V
TT
V
TT
V
TT
V
TT
V
TT
Series Terminated Output
V
REF
Z=50
相關PDF資料
PDF描述
RSM06DSUI CONN EDGECARD 12POS DIP .156 SLD
ACM28DTAT CONN EDGECARD 56POS R/A .156 SLD
ABC36DRXI-S734 CONN EDGECARD 72POS DIP .100 SLD
RCB66DHAN-S621 EDGECARD 132POS DIP R/A .050 SLD
RMM06DSUI CONN EDGECARD 12POS DIP .156 SLD
相關代理商/技術參數
參數描述
XC2S200-6PQG208I 制造商:XILINX 制造商全稱:XILINX 功能描述:Spartan-II FPGA Family
XC2S200-6TQ144C 制造商:XILINX 制造商全稱:XILINX 功能描述:Spartan-II FPGA Family
XC2S200-6TQ144I 制造商:XILINX 制造商全稱:XILINX 功能描述:Spartan-II FPGA Family
XC2S200-6TQG144C 制造商:XILINX 制造商全稱:XILINX 功能描述:Spartan-II FPGA Family
XC2S200-6TQG144I 制造商:XILINX 制造商全稱:XILINX 功能描述:Spartan-II FPGA Family
主站蜘蛛池模板: 大姚县| 博乐市| 闽清县| 扎鲁特旗| 云阳县| 弥勒县| 淅川县| 光山县| 逊克县| 台南县| 理塘县| 临邑县| 黄大仙区| 青神县| 宝山区| 治县。| 呼图壁县| 唐河县| 上蔡县| 来宾市| 香河县| 明水县| 鹿邑县| 都昌县| 大余县| 宁国市| 土默特右旗| 富阳市| 奈曼旗| 漾濞| 安西县| 延安市| 新丰县| 抚顺市| 聂荣县| 新郑市| 巍山| 蚌埠市| 丹棱县| 新竹市| 多伦县|