欧美成人免费电影,国产欧美一区二区三区精品酒店,精品国产a毛片,色网在线免费观看

參數(shù)資料
型號(hào): MPC9600
廠商: Motorola, Inc.
英文描述: LOW VOLTAGE 2.5 V AND 3.3 V CMOS PLL CLOCK DRIVER
中文描述: 低電壓2.5 V和3.3 V的CMOS PLL時(shí)鐘驅(qū)動(dòng)器
文件頁(yè)數(shù): 9/16頁(yè)
文件大小: 321K
代理商: MPC9600
TIMING SOLUTIONS
MOTOROLA
Using the MPC9600 in zero–delay applications
Nested clock trees are typical applications for the
MPC9600. For these applications the MPC9600 offers a
differential LVPECL clock input pair as a PLL reference. This
allows for the use of differential LVPECL primary clock
distribution devices such as the Motorola MC100ES6111 or
MC100ES6226, taking advantage of its superior low-skew
performance. Clock trees using LVPECL for clock distribution
and the MPC9600 as LVCMOS PLL fanout buffer with zero
insertion delay will show significantly lower clock skew than
clock distributions developed from CMOS fanout buffers.
The external feedback option of the MPC9600 PLL allows
for its use as a zero delay buffer. The PLL aligns the feedback
clock output edge with the clock input reference edge and
virtually eliminates the propagation delay through the device.
The remaining insertion delay (skew error) of the
MPC9600 in zero-delay applications is measured between
the reference clock input and any output. This effective delay
consists of the static phase offset (SPO or t(
)), I/O jitter
(tJIT(
), phase or long-term jitter), feedback path delay and
the output-to-output skew (tSK(O) relative to the feedback
output.
Calculation of part-to-part skew
The MPC9600 zero delay buffer supports applications
where critical clock signal timing can be maintained across
several devices. If the reference clock inputs (CCLK or
PCLK) of two or more MPC9600 are connected together, the
maximum overall timing uncertainty from the common CCLK
input to any output is:
tSK(PP) = t(
) + tSK(O) + tPD, LINE(FB) + tJIT(
) CF
This maximum timing uncertainty consist of 4
components: static phase offset, output skew, feedback
board trace delay and I/O (phase) jitter:
Figure 6. MPC9600 max. device-to-device skew
tPD,LINE(FB)
tJIT(
)
+
t
SK(O)
–t(
)
+t(
)
tJIT(
)
+
t
SK(O)
tSK(PP)
Max. skew
TCLKCommon
QFBDevice 1
Any QDevice 1
QFBDevice2
Any QDevice 2
Due to the statistical nature of I/O jitter a RMS value (1 )
is specified. I/O jitter numbers for other confidence factors
(CF) can be derived from Table 8.
Table 8: Confidence Facter CF
CF
Probability of clock edge within the distribution
±
1
±
2
±
3
±
4
±
5
±
6
0.68268948
0.95449988
0.99730007
0.99993663
0.99999943
0.99999999
The feedback trace delay is determined by the board
layout and can be used to fine-tune the effective delay
through each device. In the following example calculation a
I/O jitter confidence factor of 99.7% (
±
3 ) is assumed,
resulting in a worst case timing uncertainty from input to any
output of -261 ps to 341 ps relative to CCLK (VCC=3.3V and
fVCO = 200 MHz):
tSK(PP) =
[–60ps...140ps] + [–150ps...150ps] +
[(17ps –3)...(17ps 3)] + tPD, LINE(FB)
[–261ps...341ps] + tPD, LINE(FB)
Above equation uses the maximum I/O jitter number
shown in the AC characteristic table for VCC=3.3V (17 ps
RMS). I/O jitter is frequency dependant with a maximum at
the lowest VCO frequency (200 MHz for the MPC9600).
Applications using a higher VCO frequency exhibit less I/O
jitter than the AC characteristic limit. The I/O jitter
characteristics in Figure 7. can be used to derive a smaller
I/O jitter number at the specific VCO frequency, resulting in
tighter timing limits in zero-delay mode and for part-to-part
skew tSK(PP).
tSK(PP) =
Figure 7. Max. I/O Jitter versus VCO frequency for
VCC=2.5V and VCC=3.3V
Driving Transmission Lines
The MPC9600 clock driver was designed to drive high
speed signals in a terminated transmission line environment.
To provide the optimum flexibility to the user the output
drivers were designed to exhibit the lowest impedance
possible. With an output impedance of less than 20
the
drivers can drive either parallel or series terminated
transmission lines. For more information on transmission
lines the reader is referred to Motorola application note
AN1091. In most high performance clock networks
point-to-point distribution of signals is the method of choice.
In a point-to-point scheme either series terminated or parallel
F
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
n
.
相關(guān)PDF資料
PDF描述
MPC9772 3.3V 1:12 LVCMOS PLL Clock Generator
MPC9893 Low Voltage PLL Intelligent Dynamic Clock (IDCS) Switch
MPC99J93 Intelligent Dynamic Clock Switch (IDCS) PLL Clock Driver
MPD-425V 250W DC-DC POWER SUPPLY INPUT RANGE: 40~57VDC
MPE-902M SWITCHING POWER SUPPLY
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MPC9600AE 功能描述:時(shí)鐘發(fā)生器及支持產(chǎn)品 RoHS:否 制造商:Silicon Labs 類(lèi)型:Clock Generators 最大輸入頻率:14.318 MHz 最大輸出頻率:166 MHz 輸出端數(shù)量:16 占空比 - 最大:55 % 工作電源電壓:3.3 V 工作電源電流:1 mA 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:QFN-56
MPC9600AER2 功能描述:時(shí)鐘緩沖器 RoHS:否 制造商:Texas Instruments 輸出端數(shù)量:5 最大輸入頻率:40 MHz 傳播延遲(最大值): 電源電壓-最大:3.45 V 電源電壓-最小:2.375 V 最大功率耗散: 最大工作溫度:+ 85 C 最小工作溫度:- 40 C 封裝 / 箱體:LLP-24 封裝:Reel
MPC9600FA 功能描述:IC CLOCK DRVR PLL LV 1:21 48LQFP RoHS:否 類(lèi)別:集成電路 (IC) >> 時(shí)鐘/計(jì)時(shí) - 時(shí)鐘發(fā)生器,PLL,頻率合成器 系列:- 標(biāo)準(zhǔn)包裝:39 系列:- 類(lèi)型:* PLL:帶旁路 輸入:時(shí)鐘 輸出:時(shí)鐘 電路數(shù):1 比率 - 輸入:輸出:1:10 差分 - 輸入:輸出:是/是 頻率 - 最大:170MHz 除法器/乘法器:無(wú)/無(wú) 電源電壓:2.375 V ~ 3.465 V 工作溫度:0°C ~ 70°C 安裝類(lèi)型:* 封裝/外殼:* 供應(yīng)商設(shè)備封裝:* 包裝:*
MPC9608 制造商:MOTOROLA 制造商全稱(chēng):Motorola, Inc 功能描述:1:10 LVCMOS Zero Delay Clock Buffer
MPC9608AC 功能描述:時(shí)鐘緩沖器 RoHS:否 制造商:Texas Instruments 輸出端數(shù)量:5 最大輸入頻率:40 MHz 傳播延遲(最大值): 電源電壓-最大:3.45 V 電源電壓-最小:2.375 V 最大功率耗散: 最大工作溫度:+ 85 C 最小工作溫度:- 40 C 封裝 / 箱體:LLP-24 封裝:Reel
主站蜘蛛池模板: 祁东县| 河西区| 灵川县| 枝江市| 绵竹市| 彝良县| 西宁市| 汶川县| 宝山区| 新晃| 菏泽市| 交城县| 上思县| 繁昌县| 盐边县| 澜沧| 泗水县| 年辖:市辖区| 盐津县| 河东区| 武强县| 湘乡市| 涪陵区| 南川市| 蓬安县| 阆中市| 秭归县| 淮北市| 江华| 右玉县| 澳门| 衢州市| 濮阳市| 防城港市| 东兰县| 准格尔旗| 图木舒克市| 周至县| 泌阳县| 高碑店市| 东宁县|